兩者區別:
1.x 版本使用 influxQL 查詢語言,2.x 和 1.8+(beta) 使用 flux 查詢語法;相比V1 移除了database 和 RP,增加了bucket。 V2具有以下幾個概念: timestamp、field key、field value、field set、tag key、tag value、tag set、measurement、series、point、bucket、bucket schema、organization 新增的概念: bucket:所有 InfluxDB 數據都存儲在一個存儲桶中。一個桶結合了數據庫的概念和存儲周期(時間每個數據點仍然存在持續時間)。一個桶屬於一個組織 bucket schema:具有明確的schema-type的存儲桶需要為每個度量指定顯式架構。測量包含標簽、字段和時間戳。顯式模式限制了可以寫入該度量的數據的形狀。 organization:InfluxDB組織是一組用戶的工作區。所有儀表板、任務、存儲桶和用戶都屬於一個組織。
新得閱讀地址:
http://www.zhouhong.icu/archives/docker-an-zhuang-influxdb1x-he-influxdb2x-yi-ji-yu-springboot-zheng-he
一、InfluxDB1.x Docker安裝以及與Boot整合
A、docker安裝InfluxDB1.x (influxdb1.8.4)
1、安裝:
docker run -d --name influxdb -p 8086:8086 influxdb:1.8.4
2、查看
docker ps -a
3、進入docker的influx中
docker exec -it daf88772adc9 /bin/bash
4、直接輸入influx啟動
influx


5、修改賬戶密碼
# 顯示用戶 SHOW USERS # 創建用戶 CREATE USER "username" WITH PASSWORD 'password' # 賦予用戶管理員權限 GRANT ALL PRIVILEGES TO username # 創建管理員權限的用戶 CREATE USER <username> WITH PASSWORD '<password>' WITH ALL PRIVILEGES # 修改用戶密碼 SET PASSWORD FOR username = 'password' # 撤消權限 REVOKE ALL ON mydb FROM username # 查看權限 SHOW GRANTS FOR username # 刪除用戶 DROP USER "username"
6、在配置文件啟用認證
默認情況下,influxdb的配置文件是禁用認證策略的,所以需要修改設置一下。
編輯配置文件vim /etc/influxdb/influxdb.conf,把 [http] 下的 auth-enabled 選項設置為 true
7、設置保存策略(多長時間之前的數據需要刪除)---默認為 autogen 永久不刪除
a、查看數據庫的保存策略
show retention policies on 數據庫名
例子:
# 選擇使用telegraf數據庫 > use influx_test; Using database influx_test # 查詢數據保存策略 > show retention policies on influx_test name duration shardGroupDuration replicaN default ---- -------- ------------------ -------- ------- autogen 0s 168h0m0s 1 true
name 策略名稱:默認autogen
duration 持續時間: 0s 代表無限制
shardGroupDuration shardGroup數據存儲時間:shardGroup是InfluxDB的一個基本存儲結構, 應該大於這個時間的數據在查詢效率上應該有所降低。
replicaN 副本個數:1 代表只有一個副本
default 是否默認策略:true 代表設置為該數據庫的默認策略
b、設置保存策略
# 新建一個策略 CREATE RETENTION POLICY "策略名稱" ON 數據庫名 DURATION 時長 REPLICATION 副本個數; # 新建一個策略並且直接設置為默認策略 CREATE RETENTION POLICY "策略名稱" ON 數據庫名 DURATION 時長 REPLICATION 副本個數 DEFAULT;
例子:
# 創建新的默認策略role_01保留數據時長1小時 > CREATE RETENTION POLICY "1hour" ON influx_test DURATION 1h REPLICATION 1 DEFAULT;
c、修改保存策略
ALTER RETENTION POLICY "策略名稱" ON "數據庫名" DURATION 時長 ALTER RETENTION POLICY "策略名稱" ON "數據庫名" DURATION 時長 DEFAULT
d、刪除保存策略
drop retention POLICY "策略名" ON "數據庫名"
8、使用桌面可視化工具連接數據庫
如果剛才沒有設置密碼,這里可以不需要填寫密碼,如果有賬號密碼則需要勾上下面的Use SSL
連接成功后如下:

B、InfluxDB1.x與Spring整合(只列舉部分代碼,后面會放上整個項目的GitHub地址)
整個項目結構如下:
1、引入依賴 (其他依賴未顯示全,后面會放上整個項目的GitHub地址)
<dependency> <groupId>com.influxdb</groupId> <artifactId>influxdb-client-java</artifactId> <version>4.0.0</version> </dependency> <dependency> <groupId>org.influxdb</groupId> <artifactId>influxdb-java</artifactId> <version>2.20</version> </dependency>
2、新建yml文件
influx: url: 'http://xxx.xx.xxx.xx:8086' password: 'password' username: 'username'
3、連接配置 InfluxDBConfig
@Data @Configuration @ConfigurationProperties(prefix = "influx") public class InfluxDBConfig { private String url; private String username; private String password; /** * description: 用於查詢 * date: 2022/1/20 23:11 * author: zhouhong * @param * @param null * @return */ @Bean(destroyMethod = "close") public InfluxDB influxDBClient(){ return InfluxDBFactory.connect(this.url, this.username, this.password); } /** * description: 用於寫入 * date: 2022/1/20 23:12 * author: zhouhong * @param * @param null * @return */ @Bean(name = "influxDbWriteApi",destroyMethod = "close") public WriteApi influxDbWriteApi(){ InfluxDBClient influxDBClient = InfluxDBClientFactory.createV1(this.url, this.username, this.password.toCharArray(), "influx_test", "autogen"); return influxDBClient.getWriteApi(); } }
4、封裝用於查詢的方法
@Component public class InfluxUtil { /** * description: 通用查詢 * date: 2022/1/20 23:13 * author: zhouhong * @param * @param null * @return */ public QueryResult query(String command, String database, InfluxDB influxDB) { Query query = new Query(command, database); return influxDB.query(query); } }
5、新建需要寫入的數據的實體類、需要返回的類(省略,具體參考github示例)InsertParams.java InfluxResult.java
6、新建server層和impl實現類
InfluxServiceImpl.java 如下:
/** * description: 時序數據庫Impl * date: 2022/1/16 20:47 * author: zhouhong */ @Service @Slf4j public class InfluxServiceImpl implements InfluxService { @Resource(name = "influxDbWriteApi") private WriteApi influxDbWriteApi; @Resource(name = "influxDBClient") private InfluxDB influxDBClient; @Autowired private InfluxUtil influxUtil; @Override public void insert(InsertParams insertParams) { influxDbWriteApi.writeMeasurement(WritePrecision.MS, insertParams); } @Override public Object queryAll(InsertParams insertParams) { List<InfluxResult> list = new ArrayList<>(); InfluxResult influxResult = new InfluxResult(); String sql = "SELECT * FROM \"influx_test\" WHERE time > '2022-01-16' tz('Asia/Shanghai')"; QueryResult queryResult = influxUtil.query(sql, "influx_test", influxDBClient); queryResult.getResults().get(0).getSeries().get(0).getValues().forEach(item -> { influxResult.setTime(item.get(0).toString()); influxResult.setCurrent(item.get(1).toString()); influxResult.setEnergyUsed(item.get(2).toString()); influxResult.setPower(item.get(3).toString()); influxResult.setVoltage(item.get(4).toString()); list.add(influxResult); }); return list; } @Override public Object querySumByOneDay(InsertParams insertParams) { String sql = "SELECT SUM(voltage) FROM \"influx_test\" WHERE time > '2022-01-18' GROUP BY time(1d) tz('Asia/Shanghai')"; QueryResult queryResult = influxUtil.query(sql, "influx_test", influxDBClient); return queryResult.getResults().get(0).getSeries().get(0); } }
7、controller層 InfluxDbController.java(返回結果是封裝過后的,詳情見github示例)
@RestController public class InfluxDbController { @Autowired private InfluxService influxService; /** * description: 時序數據庫插入測試 * date: 2022/1/16 23:00 * author: zhouhong * @param * @param null * @return */ @PostMapping("/influxdb/insert") public ResponseData insert(@RequestBody InsertParams insertParams) { influxService.insert(insertParams); return new SuccessResponseData(); } /** * description: 時序數據庫查詢全部數據測試 * date: 2022/1/16 23:00 * author: zhouhong * @param * @param null * @return */ @PostMapping("/influxdb/queryAll") public ResponseData query(@RequestBody InsertParams insertParams) { return new SuccessResponseData(influxService.queryAll(insertParams)); } /** * description: 時序數據庫按天查詢當前電壓總和測試 * date: 2022/1/16 23:00 * author: zhouhong * @param * @param null * @return */ @PostMapping("/influxdb/queryByOneDay") public ResponseData queryByOneDay(@RequestBody InsertParams insertParams) { return new SuccessResponseData(influxService.querySumByOneDay(insertParams)); } }
8、PostMan測試(注意需要先新建一個 數據庫---influx_test)
8.1 插入測試 localhost:9998/influxdb/insert
入參:
{ "energyUsed":243.78, "power":54.50, "current":783.34, "voltage":44.09 }
返回:
{ "success": true, "code": 200, "message": "請求成功", "localizedMsg": "請求成功", "data": null }
8.2、查詢全部(注意,這里返回結果我封裝了一下)localhost:9998/influxdb/queryAll
入參:
{
}
返回:
{ "success": true, "code": 200, "message": "請求成功", "localizedMsg": "請求成功", "data": [ { "energyUsed": "243.78", "power": "54.5", "current": "783.34", "voltage": "44.09", "time": "2022-01-20T23:44:00.626+08:00" }, { "energyUsed": "243.78", "power": "54.5", "current": "783.34", "voltage": "44.09", "time": "2022-01-20T23:44:00.626+08:00" } ] }
8.3聚合查詢(統計2022-01-18到現在,以天為單位每天的用電量之和) localhost:9998/influxdb/queryByOneDay 精度問題暫時沒處理
入參:
{ }
返回:
{ "success": true, "code": 200, "message": "請求成功", "localizedMsg": "請求成功", "data": { "name": "influx_test", "tags": null, "columns": [ "time", "sum" ], "values": [ [ "2022-01-18T00:00:00+08:00", null ], [ "2022-01-19T00:00:00+08:00", null ], [ "2022-01-20T00:00:00+08:00", 481.07000000000005 ] ] } }
C、常見的查詢SQL 后面加上 tz('Asia/Shanghai') 解決時區差
1、查所指定時間之后的所有
SELECT * FROM "real_water_amount" where time > '2022-01-01' tz('Asia/Shanghai')
2、查詢平均值 mean()
SELECT mean(value) FROM "real_water_amount" where time > '2022-01-01' tz('Asia/Shanghai')
3、查詢最大最小值 max() min()
SELECT max(value) FROM "real_water_amount" where time > '2022-01-01' tz('Asia/Shanghai')
4、按年、月、天、周、小時、分鍾、秒統計
SELECT sum(value) FROM "real_water_amount" where time > '2022-01-01' group by time(1d) tz('Asia/Shanghai')
5、按照列過濾
SELECT * FROM "real_water_amount" where time > '2022-01-01' and iotId = '8ecJY59UJd1jwPLBmJA5000000'
二、InfluxDB2.x Docker安裝以及與Boot整合
A、Docker安裝InfluxDB2.x
1、安裝:默認拉取最新版本
docker run -d --name influxdb -p 8086:8086 influxdb
2、查看
docker ps -a
3、瀏覽器訪問 IP:8086 (注意:部署在遠程服務器上需要開啟8086端口安全組)設置賬號密碼
從上到下為:賬號(zhouhong)、密碼(66668888)、確認密碼(66668888)、組織(my_influxdb)、Buucket(Tom);完了之后點擊 Quick Start
4、然后點擊 Data -- > Buucket 就可以看到我們剛才創建的 名字為 Tom 的 Buucket了
5、點擊 API Tokens 獲取當前用戶的 Token(整合時需要)
6、設置Bucket的保存策略
准備工作完成,開始整合
B、InfluxDB2.x與SpringBoot整合
1、依賴
<dependency> <groupId>com.influxdb</groupId> <artifactId>influxdb-client-java</artifactId> <version>4.0.0</version> </dependency> <dependency> <groupId>org.influxdb</groupId> <artifactId>influxdb-java</artifactId> <version>2.20</version> </dependency>
2、yml配置文件
influx: influxUrl: 'http://XXX.XX.XXX.XX:8086' bucket: 'tom' org: 'my_influxdb' token: 'Rt23UemGI_cfS-lFDrurtjh46P1enfhrji-KrZYR04wUR1Yxw_oBCZPL6GmFYSDn20Q9gM_P9DIBhHc2RJjNkA=='
3、配置類
@Setter @Getter public class InfluxBean{ /** * 數據庫url地址 */ private String influxUrl; /** * 桶(表) */ private String bucket; /** * 組織 */ private String org; /** * token */ private String token; /** * 數據庫連接 */ private InfluxDBClient client; /** * 構造方法 */ public InfluxBean(String influxUrl, String bucket, String org, String token) { this.influxUrl = influxUrl; this.bucket = bucket; this.org = org; this.token = token; this.client = getClient(); } /** * 獲取連接 */ private InfluxDBClient getClient() { if (client == null) { client = InfluxDBClientFactory.create(influxUrl, token.toCharArray()); } return client; } /** * 寫入數據(以秒為時間單位) */ public void write(Object object){ try (WriteApi writeApi = client.getWriteApi()) { writeApi.writeMeasurement(bucket, org, WritePrecision.NS, object); } } /** * 讀取數據 */ public List<FluxTable> queryTable(String fluxQuery){ return client.getQueryApi().query(fluxQuery, org); } }
@Data @Configuration @ConfigurationProperties(prefix = "influx") public class InfluxConfig { /** * url地址 */ private String influxUrl; /** * 桶(表) */ private String bucket; /** * 組織 */ private String org; /** * token */ private String token; /** * 初始化bean */ @Bean(name = "influx") public InfluxBean InfluxBean() { return new InfluxBean(influxUrl, bucket, org, token); } }
4、實現類
@Service @Slf4j public class InfluxServiceImpl implements InfluxService { @Resource private InfluxBean influxBean; @Override public void insert(InsertParams insertParams) { insertParams.setTime(Instant.now()); influxBean.write(insertParams); } @Override public List<InfluxResult> queue(){ // 下面兩個 private 方法 賦值給 list 查詢對應的數據 List<FluxTable> list = queryInfluxAll(); List<InfluxResult> results = new ArrayList<>(); for (int i = 0; i < list.size(); i++) { for (int j = 0; j < list.get(i).getRecords().size(); j++) { InfluxResult influxResult = new InfluxResult(); influxResult.setCurrent(list.get(i).getRecords().get(j).getValues().get("current").toString()); influxResult.setEnergyUsed(list.get(i).getRecords().get(j).getValues().get("energyUsed").toString()); influxResult.setPower(list.get(i).getRecords().get(j).getValues().get("power").toString()); influxResult.setVoltage(list.get(i).getRecords().get(j).getValues().get("voltage").toString()); influxResult.setTime(list.get(i).getRecords().get(j).getValues().get("_time").toString()); System.err.println(list.get(i).getRecords().get(j).getValues().toString()); results.add(influxResult); } } return results; } /** * description: 查詢一小時內的InsertParams所有數據 * date: 2022/1/21 13:44 * author: zhouhong * @param * @param null * @return */ private List<FluxTable> queryInfluxAll(){ String query = " from(bucket: \"tom\")" + " |> range(start: -60m, stop: now())" + " |> filter(fn: (r) => r[\"_measurement\"] == \"influx_test\")" + " |> pivot( rowKey:[\"_time\"], columnKey: [\"_field\"], valueColumn: \"_value\" )"; return influxBean.queryTable(query); } /** * description: 根據某一個字段的值過濾(查詢 用電量 energyUsed 為 322 的那條記錄) * date: 2022/1/21 12:44 * author: zhouhong * @param * @param null * @return */ public List<FluxTable> queryFilterByEnergyUsed(){ String query = " from(bucket: \"tom\")" + " |> range(start: -60m, stop: now())" + " |> filter(fn: (r) => r[\"_measurement\"] == \"influx_test\")" + " |> filter(fn: (r) => r[\"energyUsed\"] == \"322\")" + " |> pivot( rowKey:[\"_time\"], columnKey: [\"_field\"], valueColumn: \"_value\" )"; return influxBean.queryTable(query); } }
C、測試
1、插入 localhost:9998/inlfuxdb/insert
入參:
{ "energyUsed":"23.12", "power":"321.60", "current":"782.72", "voltage":"67.43" }
返回:
{ "success": true, "code": 200, "message": "請求成功", "localizedMsg": "請求成功", "data": null }
2、查詢所有
入參:
{}
返回:
{ "success": true, "code": 200, "message": "請求成功", "localizedMsg": "請求成功", "data": [ { "energyUsed": "23.12", "power": "321.60", "current": "782.72", "voltage": "67.43", "time": "2022-01-20T17:51:01.819Z" }, { "energyUsed": "243.78", "power": "541.50", "current": "32.34", "voltage": "89.09", "time": "2022-01-20T17:33:47.246Z" } ] }
D、Flux常見查詢語句
1、指定數據源:from(bucket:"tom")
指定時間范圍:
使用管道轉發運算符 ( |>) 將數據從數據源通過管道傳輸到range() 函數,該函數指定查詢的時間范圍。它接受兩個參數:start和stop。范圍可以是使用相對負持續時間 或使用絕對時間
//使用絕對時間 from(bucket:"tom") |> range(start: 2022-01-05T23:30:00Z, stop: 2022-01-21T00:00:00Z) //過去十五天的數據 from(bucket:"tom") |> range(start: -15d)
2、數據過濾
將范圍數據傳遞到filter()函數中,以根據數據屬性或列縮小結果范圍
// 根據 _measurement 和 _field 過濾 from(bucket:"tom") |> range(start: -15d) |> filter(fn: (r) => r._measurement == "influx_test" and r._field == "power" and r.energyUsed == "23.12" )
3、數據轉換
使用函數,將數據聚合為平均值、下采樣數據等
from(bucket:"tom") |> range(start: -15d) |> filter(fn: (r) => r._measurement == "influx_test" ) |> window(every: 10m) from(bucket:"tom") |> range(start: -15d) |> filter(fn: (r) => r._measurement == "influx_test" ) |> window(every: 10m) |> mean()