在JDK的並發包(java.util.concurrent下)中給開發者提供了幾個非常有用的並發工具類,讓用戶不需要再去關心如何在並發場景下寫出同時兼顧線程安全性與高效率的代碼。
本文分別介紹CountDownLatch、CyclicBarrier和Semaphore這三個工具類在不同場景下的簡單使用,並結合jdk1.8源碼簡單分析它們的實現原理。
CountDownLatch
CountDownLatch允許一個或多個線程等待其他線程完成操作。
假設一個Excel文件有多個sheet,我們需要去記錄每個sheet有多少行數據,
這時我們就可以使用CountDownLatch實現主線程等待所有sheet線程完成sheet的解析操作后,再繼續執行自己的任務。
public class CountDownLatchTest {
private static class WorkThread extends Thread {
private CountDownLatch cdl;
public WorkThread(String name, CountDownLatch cdl) {
super(name);
this.cdl = cdl;
}
public void run() {
System.out.println(this.getName() + "啟動了,時間為" + System.currentTimeMillis());
System.out.println(this.getName() + "我要統計每個sheet的行數");
try {
cdl.await();
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(this.getName() + "執行完了,時間為" + System.currentTimeMillis());
}
}
private static class sheetThread extends Thread {
private CountDownLatch cdl;
public sheetThread(String name, CountDownLatch cdl) {
super(name);
this.cdl = cdl;
}
public void run() {
try {
System.out.println(this.getName() + "啟動了,時間為" + System.currentTimeMillis());
Thread.sleep(1000); //模擬任務執行耗時
cdl.countDown();
System.out.println(this.getName() + "執行完了,時間為" + System.currentTimeMillis() + " sheet的行數為:" + (int) (Math.random()*100));
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
public static void main(String[] args) throws Exception {
CountDownLatch cdl = new CountDownLatch(2);
WorkThread wt0 = new WorkThread("WorkThread", cdl );
wt0.start();
sheetThread dt0 = new sheetThread("sheetThread1", cdl);
sheetThread dt1 = new sheetThread("sheetThread2", cdl);
dt0.start();
dt1.start();
}
}
執行結果:
WorkThread啟動了,時間為1640054503027 WorkThread我要統計每個sheet的行數 sheetThread1啟動了,時間為1640054503028 sheetThread2啟動了,時間為1640054503029 sheetThread2執行完了,時間為1640054504031 sheet的行數為:6 sheetThread1執行完了,時間為1640054504031 sheet的行數為:44 WorkThread執行完了,時間為1640054505036
可以看到,首先WorkThread執行await后開始等待,WorkThread在等待sheetThread1和sheetThread2都執行完自己的任務后,WorkThread立刻繼續執行后面的代碼。
CountDownLatch的構造函數接收一個int類型的參數作為計數器,如果你想等待N個點完成,這里就傳入N。
當我們調用CountDownLatch的countDown方法時,N就會減1,CountDownLatch的await方法會阻塞當前線程,直到N變成零。
由於countDown方法可以用在任何地方,所以這里說的N個點,可以是N個線程,也可以是1個線程里的N個執行步驟。
用在多個線程時,只需要把這個CountDownLatch的引用傳遞到線程里即可。
我們繼續根據上面的測試案例流程,一步一步的分析CountDownLatch 源碼。
第一步看CountDownLatch的構造方法,傳入一個不能小於0的int類型的參數作為計數器
public CountDownLatch(int count) {
if (count < 0) throw new IllegalArgumentException("count < 0");
this.sync = new Sync(count);
}
/**
* Synchronization control For CountDownLatch.
* Uses AQS state to represent count.
*/
private static final class Sync extends AbstractQueuedSynchronizer {
private static final long serialVersionUID = 4982264981922014374L;
Sync(int count) {
setState(count);
}
int getCount() {
return getState();
}
protected int tryAcquireShared(int acquires) {
return (getState() == 0) ? 1 : -1;
}
protected boolean tryReleaseShared(int releases) {
// Decrement count; signal when transition to zero
for (;;) {
int c = getState();
if (c == 0)
return false;
int nextc = c-1;
if (compareAndSetState(c, nextc))
return nextc == 0;
}
}
}
看它的注釋,說的非常清楚,Sync就是CountDownLatch的同步控制器了,而它也是繼承了AQS,並且第3行注釋說到使用了AQS的state去代表count值。
第二步就是工作線程調用await()方法
public void await() throws InterruptedException {
sync.acquireSharedInterruptibly(1);
}
public final void acquireSharedInterruptibly(int arg)
throws InterruptedException {
if (Thread.interrupted())
throw new InterruptedException();
if (tryAcquireShared(arg) < 0)
doAcquireSharedInterruptibly(arg);
}
如果線程中斷,拋出異常,否則開始調用 tryAcquireShared(1),其內部類Sync的實現也非常簡單,就是判斷state也就是CountDownLatch的計數是否等於0,
如果等於0,則該方法返回1,第5行的if判斷不成立,否則該方法返回-1,第5行的if判斷成立,繼續執行doAcquireSharedInterruptibly(1)。
/**
* Acquires in shared interruptible mode.
* @param arg the acquire argument
*/
private void doAcquireSharedInterruptibly(int arg)
throws InterruptedException {
final Node node = addWaiter(Node.SHARED);
boolean failed = true;
try {
for (;;) {
final Node p = node.predecessor();
if (p == head) {
int r = tryAcquireShared(arg);
if (r >= 0) {
setHeadAndPropagate(node, r);
p.next = null; // help GC
failed = false;
return;
}
}
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
throw new InterruptedException();
}
} finally {
if (failed)
cancelAcquire(node);
}
}
這個方法其實就是去獲取共享模式下的鎖,獲取失敗就park住。正如我們測試案例中的WorkThread線程應該次數就被park住了,那么它又是何時被喚醒的呢?
下面就到 countDown()方法了
public void countDown() {
sync.releaseShared(1);
}
public final boolean releaseShared(int arg) {
if (tryReleaseShared(arg)) {
doReleaseShared();
return true;
}
return false;
}
tryReleaseShared(1)方法嘗試去釋放共享鎖
protected boolean tryReleaseShared(int releases) {
// Decrement count; signal when transition to zero
for (;;) {
int c = getState();
if (c == 0)
return false;
int nextc = c-1;
if (compareAndSetState(c, nextc))
return nextc == 0;
}
}
在for循環中,先獲取CountDownLatch的計數也就是當前state,如果等於0返回false,否則將state更新為state-1,並返回最新的state是否等於0。
因此在我們的測試案例中,我們需要調用兩次 countDown方法,才會將全局的state更新為0,然后繼續執行doReleaseShared()方法。
/**
* Release action for shared mode -- signals successor and ensures
* propagation. (Note: For exclusive mode, release just amounts
* to calling unparkSuccessor of head if it needs signal.)
*/
private void doReleaseShared() {
/*
* Ensure that a release propagates, even if there are other
* in-progress acquires/releases. This proceeds in the usual
* way of trying to unparkSuccessor of head if it needs
* signal. But if it does not, status is set to PROPAGATE to
* ensure that upon release, propagation continues.
* Additionally, we must loop in case a new node is added
* while we are doing this. Also, unlike other uses of
* unparkSuccessor, we need to know if CAS to reset status
* fails, if so rechecking.
*/
for (;;) {
Node h = head;
if (h != null && h != tail) {
int ws = h.waitStatus;
if (ws == Node.SIGNAL) {
if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))
continue; // loop to recheck cases
unparkSuccessor(h);
}
else if (ws == 0 &&
!compareAndSetWaitStatus(h, 0, Node.PROPAGATE))
continue; // loop on failed CAS
}
if (h == head) // loop if head changed
break;
}
}
/**
* Wakes up node's successor, if one exists.
*
* @param node the node
*/
private void unparkSuccessor(Node node) {
/*
* If status is negative (i.e., possibly needing signal) try
* to clear in anticipation of signalling. It is OK if this
* fails or if status is changed by waiting thread.
*/
int ws = node.waitStatus;
if (ws < 0)
compareAndSetWaitStatus(node, ws, 0);
/*
* Thread to unpark is held in successor, which is normally
* just the next node. But if cancelled or apparently null,
* traverse backwards from tail to find the actual
* non-cancelled successor.
*/
Node s = node.next;
if (s == null || s.waitStatus > 0) {
s = null;
for (Node t = tail; t != null && t != node; t = t.prev)
if (t.waitStatus <= 0)
s = t;
}
if (s != null)
LockSupport.unpark(s.thread);
}
LockSupport.unpark(s.thread),喚醒線程的方法被調用后,WorkThread線程就可以繼續執行了。
至此我們簡單分析了整個測試案例中CountDownLatch的代碼流程。
Semaphore
Semaphore(信號量)是用來控制同時訪問特定資源的線程數量,相當於一個並發控制器,構造的時候傳入可供管理的信號量的數值,這個數值就是用來控制並發數量的,
每個線程執行前先通過acquire方法獲取信號,執行后通過release歸還信號 。每次acquire返回成功后,Semaphore可用的信號量就會減少一個,如果沒有可用的信號,
acquire調用就會阻塞,等待有release調用釋放信號后,acquire才會得到信號並返回。
下面我們看個測試案例
public class SemaphoreTest {
public static void main(String[] args) {
final Semaphore semaphore = new Semaphore(5);
Runnable runnable = () -> {
try {
semaphore.acquire();
System.out.println(Thread.currentThread().getName() + "獲得了信號量>>>>>,時間為" + System.currentTimeMillis());
Thread.sleep(1000);
System.out.println(Thread.currentThread().getName() + "釋放了信號量<<<<<,時間為" + System.currentTimeMillis());
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
semaphore.release();
}
};
Thread[] threads = new Thread[10];
for (int i = 0; i < threads.length; i++)
threads[i] = new Thread(runnable);
for (int i = 0; i < threads.length; i++)
threads[i].start();
}
}
執行結果:
Thread-0獲得了信號量>>>>>,時間為1640058647604 Thread-1獲得了信號量>>>>>,時間為1640058647604 Thread-2獲得了信號量>>>>>,時間為1640058647604 Thread-3獲得了信號量>>>>>,時間為1640058647605 Thread-4獲得了信號量>>>>>,時間為1640058647605 Thread-0釋放了信號量<<<<<,時間為1640058648606 Thread-1釋放了信號量<<<<<,時間為1640058648606 Thread-5獲得了信號量>>>>>,時間為1640058648607 Thread-4釋放了信號量<<<<<,時間為1640058648607 Thread-3釋放了信號量<<<<<,時間為1640058648607 Thread-7獲得了信號量>>>>>,時間為1640058648607 Thread-8獲得了信號量>>>>>,時間為1640058648607 Thread-2釋放了信號量<<<<<,時間為1640058648606 Thread-6獲得了信號量>>>>>,時間為1640058648607 Thread-9獲得了信號量>>>>>,時間為1640058648607 Thread-7釋放了信號量<<<<<,時間為1640058649607 Thread-6釋放了信號量<<<<<,時間為1640058649607 Thread-8釋放了信號量<<<<<,時間為1640058649607 Thread-9釋放了信號量<<<<<,時間為1640058649608 Thread-5釋放了信號量<<<<<,時間為1640058649607
我們使用for循環同時創建10個線程,首先是線程 0 1 2 3 4獲得了信號量,再后面的10行打印結果中,線程1到5分別釋放信號量,相同線程間隔也是1000毫秒,
然后線程5 6 7 8 9才能繼續獲得信號量,而且保持最大獲取信號量的線程數小於等於5。
看下Semaphore的構造方法
public Semaphore(int permits) {
sync = new NonfairSync(permits);
}
public Semaphore(int permits, boolean fair) {
sync = fair ? new FairSync(permits) : new NonfairSync(permits);
}
它支持傳入一個int類型的permits,一個布爾類型的fair,因此Semaphore也有公平模式與非公平模式。
/**
* Synchronization implementation for semaphore. Uses AQS state
* to represent permits. Subclassed into fair and nonfair
* versions.
*/
abstract static class Sync extends AbstractQueuedSynchronizer {
private static final long serialVersionUID = 1192457210091910933L;
Sync(int permits) {
setState(permits);
}
final int getPermits() {
return getState();
}
final int nonfairTryAcquireShared(int acquires) {
for (;;) {
int available = getState();
int remaining = available - acquires;
if (remaining < 0 ||
compareAndSetState(available, remaining))
return remaining;
}
}
protected final boolean tryReleaseShared(int releases) {
for (;;) {
int current = getState();
int next = current + releases;
if (next < current) // overflow
throw new Error("Maximum permit count exceeded");
if (compareAndSetState(current, next))
return true;
}
}
final void reducePermits(int reductions) {
for (;;) {
int current = getState();
int next = current - reductions;
if (next > current) // underflow
throw new Error("Permit count underflow");
if (compareAndSetState(current, next))
return;
}
}
final int drainPermits() {
for (;;) {
int current = getState();
if (current == 0 || compareAndSetState(current, 0))
return current;
}
}
}
第9行代碼可見Semaphore也是通過AQS的state來作為信號量的計數的
第12行 getPermits() 方法獲取當前的可用的信號量,即還有多少線程可以同時獲得信號量
第15行 nonfairTryAcquireShared方法嘗試獲取共享鎖,邏輯就是直接將可用信號量減去該方法請求獲取的數量,更新state並返回該值。
第24行 tryReleaseShared 方法嘗試釋放共享鎖,邏輯就是直接將可用信號量加上該方法請求釋放的數量,更新state並返回。
再看下Semaphore的公平鎖
/**
* Fair version
*/
static final class FairSync extends Sync {
private static final long serialVersionUID = 2014338818796000944L;
FairSync(int permits) {
super(permits);
}
protected int tryAcquireShared(int acquires) {
for (;;) {
if (hasQueuedPredecessors())
return -1;
int available = getState();
int remaining = available - acquires;
if (remaining < 0 ||
compareAndSetState(available, remaining))
return remaining;
}
}
}
看嘗試獲取共享鎖的方法中,多了個 if (hasQueuedPredecessors) 的判斷,在java多線程6:ReentrantLock,
分析過hasQueuedPredecessors其實就是判斷當前等待隊列中是否存在等待線程,並判斷第一個等待的線程(head.next)是否是當前線程。
CyclicBarrier
CyclicBarrier的字面意思是可循環使用(Cyclic)的屏障(Barrier)。它要做的事情是,讓一組線程到達一個屏障(也可以叫同步點)時被阻塞,
直到最后一個線程到達屏障時,屏障才會開門,所有被屏障攔截的線程才會繼續運行。
一組線程同時被喚醒,讓我們想到了ReentrantLock的Condition,它的signalAll方法可以喚醒await在同一個condition的所有線程。
下面我們還是從一個簡單的測試案例先了解下CyclicBarrier的用法
public class CyclicBarrierTest extends Thread {
private CyclicBarrier cb;
private int sleepSecond;
public CyclicBarrierTest(CyclicBarrier cb, int sleepSecond) {
this.cb = cb;
this.sleepSecond = sleepSecond;
}
public void run() {
try {
System.out.println(this.getName() + "開始, 時間為" + System.currentTimeMillis());
Thread.sleep(sleepSecond * 1000);
cb.await();
System.out.println(this.getName() + "結束, 時間為" + System.currentTimeMillis());
} catch (Exception e) {
e.printStackTrace();
}
}
public static void main(String[] args) {
Runnable runnable = new Runnable() {
public void run() {
System.out.println("CyclicBarrier的barrierAction開始運行, 時間為" + System.currentTimeMillis());
}
};
CyclicBarrier cb = new CyclicBarrier(2, runnable);
CyclicBarrierTest cbt0 = new CyclicBarrierTest(cb, 3);
CyclicBarrierTest cbt1 = new CyclicBarrierTest(cb, 6);
cbt0.start();
cbt1.start();
}
}
執行結果:
Thread-1開始, 時間為1640069673534 Thread-0開始, 時間為1640069673534 CyclicBarrier的barrierAction開始運行, 時間為1640069679536 Thread-1結束, 時間為1640069679536 Thread-0結束, 時間為1640069679536
可以看到Thread-0和Thread-1同時運行,而自定義的線程barrierAction是在6000毫秒后開始執行,說明Thread-0在await之后,等待了3000毫秒,和Thread-1一起繼續執行的。
看下 CyclicBarrier 的一個更高級的構造函數
public CyclicBarrier(int parties, Runnable barrierAction) {
if (parties <= 0) throw new IllegalArgumentException();
this.parties = parties;
this.count = parties;
this.barrierCommand = barrierAction;
}
parties就是設定需要多少線程在屏障前等待,只有調用await方法的線程數達到才能喚醒所有的線程,還有注意因為使用CyclicBarrier的線程都會阻塞在await方法上,
所以在線程池中使用CyclicBarrier時要特別小心,如果線程池的線程過少,那么就會發生死鎖。
Runnable barrierAction用於在線程到達屏障時,優先執行barrierAction,方便處理更復雜的業務場景。
/**
* Main barrier code, covering the various policies.
*/
private int dowait(boolean timed, long nanos)
throws InterruptedException, BrokenBarrierException,
TimeoutException {
final ReentrantLock lock = this.lock;
lock.lock();
try {
final Generation g = generation;
if (g.broken)
throw new BrokenBarrierException();
if (Thread.interrupted()) {
breakBarrier();
throw new InterruptedException();
}
int index = --count;
if (index == 0) { // tripped
boolean ranAction = false;
try {
final Runnable command = barrierCommand;
if (command != null)
command.run();
ranAction = true;
nextGeneration();
return 0;
} finally {
if (!ranAction)
breakBarrier();
}
}
// loop until tripped, broken, interrupted, or timed out
for (;;) {
try {
if (!timed)
trip.await();
else if (nanos > 0L)
nanos = trip.awaitNanos(nanos);
} catch (InterruptedException ie) {
if (g == generation && ! g.broken) {
breakBarrier();
throw ie;
} else {
// We're about to finish waiting even if we had not
// been interrupted, so this interrupt is deemed to
// "belong" to subsequent execution.
Thread.currentThread().interrupt();
}
}
if (g.broken)
throw new BrokenBarrierException();
if (g != generation)
return index;
if (timed && nanos <= 0L) {
breakBarrier();
throw new TimeoutException();
}
}
} finally {
lock.unlock();
}
}
首先是 ReentrantLock加鎖,全局的count值-1,然后判斷count是否等於0,如果不等於0,則循環,condition執行await等待,直到觸發、中斷、中斷或超時,
如果count值等於0,先執行 barrierAction線程,然后condition開始喚醒所有等待的線程。
簡單是使用之后,有人會覺得CyclicBarrier和CountDownLatch有點像,其實它們兩者有些細微的差別:
1:CountDownLatch是在多個線程都進行了latch.countDown()后才會觸發事件,喚醒await()在latch上的線程,而執行countDown()的線程,是不會阻塞的;
CyclicBarrier是一個柵欄,用於同步所有調用await()方法的線程,線程執行了await()方法之后並不會執行之后的代碼,而只有當執行await()方法的線程數等於指定的parties之后,這些執行了await()方法的線程才會同時運行。
2:CountDownLatch不能循環使用,計數器減為0就減為0了,不能被重置;CyclicBarrier本是就是支持循環使用parties,而且提供了reset()方法,可以重置計數器。
參考文獻
1:《Java並發編程的藝術》
