### <span id="1">一、All inputs of range must be ints, found Tensor in argument 0:</span>

**問題**
<font color="red">參數類型不正確,函數的默認參數是tensor</font>
**解決措施**
<font color="red">函數傳入參數不是tensor需要注明類型</font>
我的問題是傳入參數`npoint`是一個`int`類型,沒有注明會報錯,更改如下:
由
```python
def test(npoint):
...
```
更改為
```python
def test(npoint: int):
...
```
二、Sliced expression not yet supported for subscripted assignment. File a bug if you want this:

問題
不支持賦值給切片表達式
解決措施
根據自己需求,進行修改,可利用循環替代
我將view_shape[1:] = [1] * (len(view_shape) - 1)更改為
for i in range(1, len(view_shape)):
view_shape[i] = 1
三、Tried to access nonexistent attribute or method 'len' of type 'torch.torch.nn.modules.container.ModuleList'. Did you forget to initialize an attribute in init()?

問題
forward函數中好像不支持len(nn.ModuleList())和下標訪問
解決措施
如果是一個ModuleList()可以用enumerate函數,多個同維度的可以用zip函數
我這里有兩個ModuleList(),所以采用zip函數,更改如下:
由
for i, conv in enumerate(self.mlp_convs):
bn = self.mlp_bns[i]
new_points = F.relu(bn(conv(new_points)))
更改為
for conv, bn in zip(self.mlp_convs, self.mlp_bns):
new_points = F.relu(bn(conv(new_points)))
ref: https://github.com/pytorch/pytorch/issues/16123
四、Expected integer literal for index
問題和解決方法類似第三個
五、Arguments for call are not valid. The following variants are available
Expected a value of type 'List[Tensor]' for argument 'indices' but instead found type 'List[Optional[Tensor]]'

問題
賦值類型不對,需求是tensor,但給的是int
解決措施
- 方法1
將int類型的數N用torch.tensor(N)代替
由
mask = sqrdists > radius ** 2
group_idx[mask] = N
變為
mask = sqrdists > radius ** 2
group_idx[mask] = torch.tensor(N)
- 方法2 (速度較慢)
用for循環替代`
由
mask = sqrdists > radius ** 2
group_idx[mask] = N
變為
B, rows, cols = sqrdists.shape
ref_redius = radius ** 2
for b in range(B):
for r in range(rows):
print("r: ", r)
for c in range(cols):
if sqrdists[b][r][c] > ref_redius:
group_idx[b][r][c] = N
