Kafka客戶端包括producer及consumer API,通過在wireshark中查看所捕獲的請求,能更好的理解從producer及consumer到broker的網絡連接過程。對於producer端,為了發送數據,需要建立client到broker節點的TCP長連接,此長連接可用於更新metadata,發送消息到broker,在超過配置的空閑時間后,為了節省資源,長連接將被關閉。
1:producer kerberos 認證連接
在創建producer實例時,調用KafkaProducer類中的函數createChannelBuilder,因為配置了kerberos認證,將啟動client到KDC的認證過程
private KafkaProducer(ProducerConfig config, Serializer<K> keySerializer, Serializer<V> valueSerializer) { ...... ChannelBuilder channelBuilder = ClientUtils.createChannelBuilder(config.values()); ...... }
上面第一個參數里配置的authentication為SASL_PLAINTEXT,所以此方法將創建一個SaslChannelBuilder 通道構造器,
channelBuilder = new SaslChannelBuilder(mode, loginType, securityProtocol, clientSaslMechanism, saslHandshakeRequestEnable);
對應輸入參數為 mode = CLIENT loginType = CLIENT securityProtocol = SASL_PLAINTEXT clientSaslMechanism = GSSAPI saslHandshakeRequestEnable = true 創建好通道構造器后,就是設置配置信息,調用channelBuilder.configure(configs);在此方法中將創建loginManager實例,而在loginManager構造的時候,將取得KerberosLogin實例,並登陸,
login = hasKerberos ? new KerberosLogin() : new DefaultLogin(); login.configure(configs, loginContext); login.login();
從Wireshark的捕獲可以看到請求與響應的過程,默認情況下,kerberos使用UDP協議,前面4條便是使用的UDP協議,但因為受限於請求包的長度限制,所以返回失敗,錯誤碼是KRB5KDC_ERR_PREAUTH_REQUIRED及KRB5KRB_ERR_RESPONSE_TOO_BIG,於是在第5條重新使用TCP發送AS-REQ請求到目標端口88,並收到AS-REP響應
下面是到KDC的Authentication Service的連接過程:
請求AS成功后,緊接着就是到KDC的Ticket Granting Service以獲取票據的連接過程
具體可以參考文章:KRB5KDC_ERR_PREAUTH_REQUIRED
2:producer sender線程
在創建producer實例過程中,將先初始化一個metadata實例,這個metadata保存的是集群的配置信息,如broker的列表topic,partition與broker的映射關系
private KafkaProducer(ProducerConfig config, Serializer<K> keySerializer, Serializer<V> valueSerializer) { try { ...... //初始化metadata對象,設置屬性metadata.max.age.ms,這個值從producer 的配置文件獲取,表示更新meta的時間周期 this.metadata = new Metadata(retryBackoffMs, config.getLong(ProducerConfig.METADATA_MAX_AGE_CONFIG)); ...... //設置初始的broker節點信息,是從配置的bootstrap.servers屬性獲取 this.metadata.update(Cluster.bootstrap(addresses), time.milliseconds()); ...... String ioThreadName = "kafka-producer-network-thread" + (clientId.length() > 0 ? " | " + clientId : ""); this.ioThread = new KafkaThread(ioThreadName, this.sender, true); this.ioThread.start(); } } catch (Throwable t) { // call close methods if internal objects are already constructed // this is to prevent resource leak. see KAFKA-2121 close(0, TimeUnit.MILLISECONDS, true); // now propagate the exception throw new KafkaException("Failed to construct kafka producer", t); } }
同時將啟動一個sender IO線程,在這個線程中將真正建立從client到broker的連接,從broker獲取metadata 信息及當發送的數據在緩存中達到閾值時,從accumulator中獲取消息並發送給broker。NetworkClient是kafka客戶端的網絡接口層,實現了接口KafkaClient,封裝了Java NIO對網絡的調用,函數initiateConnect進行初始化連接,所連接的broker 節點由函數leastLoadedNode確定
public class NetworkClient implements KafkaClient { /** * Initiate a connection to the given node */ private void initiateConnect(Node node, long now) { String nodeConnectionId = node.idString(); try { log.debug("Initiating connection to node {} at {}:{}.", node.id(), node.host(), node.port()); this.connectionStates.connecting(nodeConnectionId, now); selector.connect(nodeConnectionId, new InetSocketAddress(node.host(), node.port()), this.socketSendBuffer, this.socketReceiveBuffer); } catch (IOException e) { /* attempt failed, we'll try again after the backoff */ connectionStates.disconnected(nodeConnectionId, now); /* maybe the problem is our metadata, update it */ metadataUpdater.requestUpdate(); log.debug("Error connecting to node {} at {}:{}:", node.id(), node.host(), node.port(), e); } } }
在wireshark中可以看到建立連接的TCP 3次握手過程
3:metadata的獲取更新
建立好連接后,sender線程中調用KafkaClient 的poll來對socket進行實際的讀寫操作,在poll函數中首先調用metadataUpdater.maybeUpdate(now)來判斷是否需要更新metadata,
{Class NetworkClient} //do actual reads and writes to sockets public List<ClientResponse> poll(long timeout, long now) { long metadataTimeout = metadataUpdater.maybeUpdate(now); //判斷是否需要更新metadata try { this.selector.poll(Utils.min(timeout, metadataTimeout, requestTimeoutMs)); } catch (IOException e) { log.error("Unexpected error during I/O", e); } ...... }
如果canSendRequest返回true,則調用dosend發送請求到某個broker node獲取metadata,其實dosend只是把獲取metadata的request放到隊列中,由selector.poll從隊列中獲取數據並實際發送請求到broker
{Class DefaultMetadataUpdater} public long maybeUpdate(long now) { ...... if (metadataTimeout == 0) { // Beware that the behavior of this method and the computation of timeouts for poll() are // highly dependent on the behavior of leastLoadedNode. Node node = leastLoadedNode(now); maybeUpdate(now, node); } return metadataTimeout; } private void maybeUpdate(long now, Node node) { if (node == null) { log.debug("Give up sending metadata request since no node is available"); // mark the timestamp for no node available to connect this.lastNoNodeAvailableMs = now; return; } String nodeConnectionId = node.idString(); if (canSendRequest(nodeConnectionId)) { this.metadataFetchInProgress = true; MetadataRequest metadataRequest; if (metadata.needMetadataForAllTopics()) metadataRequest = MetadataRequest.allTopics(); else metadataRequest = new MetadataRequest(new ArrayList<>(metadata.topics())); ClientRequest clientRequest = request(now, nodeConnectionId, metadataRequest); log.debug("Sending metadata request {} to node {}", metadataRequest, node.id()); doSend(clientRequest, now); //發送請求到某個broker node,使用下面initiateConnect建立的與此node的長連接 } else if (connectionStates.canConnect(nodeConnectionId, now)) { // we don't have a connection to this node right now, make one log.debug("Initialize connection to node {} for sending metadata request", node.id()); initiateConnect(node, now);//建立到node的長連接 } else { // connected, but can't send more OR connecting // In either case, we just need to wait for a network event to let us know the selected // connection might be usable again. this.lastNoNodeAvailableMs = now; } }
在wireshark中,可以看到從broker獲取metadata的Request / Response 過程,從broker node返回的是所有的broker 列表。
4:producer 發送數據
當用戶調用下面方法發送數據時
producer.send(producerRecord, new ProducerCallBack(requestId))
其實是將數據保存在accumulator中的,在doSend方法中會先確定是否有metadata信息,如果有metadata,則對數據做key及value的序列化,然后將數據append到accumulator中便返回
{Class KafkaProducer}
private Future<RecordMetadata> doSend(ProducerRecord<K, V> record, Callback callback) { TopicPartition tp = null; try { // first make sure the metadata for the topic is available long waitedOnMetadataMs = waitOnMetadata(record.topic(), this.maxBlockTimeMs); long remainingWaitMs = Math.max(0, this.maxBlockTimeMs - waitedOnMetadataMs); byte[] serializedKey; ...... serializedKey = keySerializer.serialize(record.topic(), record.key()); //key 序列化 byte[] serializedValue; ...... serializedValue = valueSerializer.serialize(record.topic(), record.value()); //value 序列化 int partition = partition(record, serializedKey, serializedValue, metadata.fetch()); int serializedSize = Records.LOG_OVERHEAD + Record.recordSize(serializedKey, serializedValue);
......
RecordAccumulator.RecordAppendResult result = accumulator.append(tp, timestamp, serializedKey, serializedValue, interceptCallback, remainingWaitMs); return result.future; ...... }
在sender線程中,將從accumulator中獲取數據,並發送到相應的broker node
從上面的網絡連接可以看到有2次發送請求的過程,Request() 及 Request(Exchange),在TCP的封包中,也可以看到有avro.schema的模式信息
總結:
1:如果配置kerberos認證,則需要到KDC (AS/TGS)進行TCP連接的請求
2:初始情況,根據bootstrap.servers配置的broker列表,建立到每個節點的TCP長連接
3:一個kafka producer實例對應一個sender線程,客戶端根據leastLoadedNode返回的節點,向此節點發送獲取metadata的更新請求,可以得到全部的brokers,也就是說在bootstrap.server中的節點只是全部節點的一個子集
4:創建producer后,如果立刻發送數據,數據保存在accumulator中,sender線程會讀取accumulator,並獲取metadata,使用已有連接(如果沒有連接則建立TCP連接)發送數據
5:sender線程調用NetworkClient.poll不斷的輪詢,按metadata.max.age.ms配置的時間周期性的更新metadata,在本文中配置的是"metadata.max.age.ms" -> "300000",故會每300秒更新一次metadata。
6:在創建到某個node的長連接后,如果時間到了上面metadata更新周期,又將創建一個新的長連接,更新metadata后,如果原來那個連接在"connections.max.idle.ms" -> "540000"所配置的默認時間沒有使用過,會斷開空閑的長連接,一旦斷開連接,立刻又請求更新metadata
下圖為抓取的從producer客戶端到broker的TCP連接的請求過程,僅供參考: