在Python中運行gmssl
Python版本
Python 3.8.1
gmssl介紹
GmSSL是一個開源的加密包的python實現,支持SM2/SM3/SM4等國密(國家商用密碼)算法、項目采用對商業應用友好的類BSD開源許可證,開源且可以用於閉源的商業應用。
安裝gmssl包
相關包網址:https://pypi.org/project/gmssl/
在終端輸入:pip install gmssl
進行安裝
基於gmssl的SM2、3、4算法實現
SM2算法
RSA算法的危機在於其存在亞指數算法,對ECC算法而言一般沒有亞指數攻擊算法 SM2橢圓曲線公鑰密碼算法:我國自主知識產權的商用密碼算法,是ECC(Elliptic Curve Cryptosystem)算法的一種,基於橢圓曲線離散對數問題,計算復雜度是指數級,求解難度較大,同等安全程度要求下,橢圓曲線密碼較其他公鑰算法所需密鑰長度小很多。
gmssl是包含國密SM2算法的Python實現, 提供了 encrypt
、 decrypt
、encrypt
和decrypt
等函數用於加密解密簽名和驗簽, 用法如下:
- 生成SM2密鑰對
from random import SystemRandom
class CurveFp:
def __init__(self, A, B, P, N, Gx, Gy, name):
self.A = A
self.B = B
self.P = P
self.N = N
self.Gx = Gx
self.Gy = Gy
self.name = name
sm2p256v1 = CurveFp(
name="sm2p256v1",
A=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFC,
B=0x28E9FA9E9D9F5E344D5A9E4BCF6509A7F39789F515AB8F92DDBCBD414D940E93,
P=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFF,
N=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFF7203DF6B21C6052B53BBF40939D54123,
Gx=0x32C4AE2C1F1981195F9904466A39C9948FE30BBFF2660BE1715A4589334C74C7,
Gy=0xBC3736A2F4F6779C59BDCEE36B692153D0A9877CC62A474002DF32E52139F0A0
)
def multiply(a, n, N, A, P):
return fromJacobian(jacobianMultiply(toJacobian(a), n, N, A, P), P)
def add(a, b, A, P):
return fromJacobian(jacobianAdd(toJacobian(a), toJacobian(b), A, P), P)
def inv(a, n):
if a == 0:
return 0
lm, hm = 1, 0
low, high = a % n, n
while low > 1:
r = high//low
nm, new = hm-lm*r, high-low*r
lm, low, hm, high = nm, new, lm, low
return lm % n
def toJacobian(Xp_Yp):
Xp, Yp = Xp_Yp
return (Xp, Yp, 1)
def fromJacobian(Xp_Yp_Zp, P):
Xp, Yp, Zp = Xp_Yp_Zp
z = inv(Zp, P)
return ((Xp * z**2) % P, (Yp * z**3) % P)
def jacobianDouble(Xp_Yp_Zp, A, P):
Xp, Yp, Zp = Xp_Yp_Zp
if not Yp:
return (0, 0, 0)
ysq = (Yp ** 2) % P
S = (4 * Xp * ysq) % P
M = (3 * Xp ** 2 + A * Zp ** 4) % P
nx = (M**2 - 2 * S) % P
ny = (M * (S - nx) - 8 * ysq ** 2) % P
nz = (2 * Yp * Zp) % P
return (nx, ny, nz)
def jacobianAdd(Xp_Yp_Zp, Xq_Yq_Zq, A, P):
Xp, Yp, Zp = Xp_Yp_Zp
Xq, Yq, Zq = Xq_Yq_Zq
if not Yp:
return (Xq, Yq, Zq)
if not Yq:
return (Xp, Yp, Zp)
U1 = (Xp * Zq ** 2) % P
U2 = (Xq * Zp ** 2) % P
S1 = (Yp * Zq ** 3) % P
S2 = (Yq * Zp ** 3) % P
if U1 == U2:
if S1 != S2:
return (0, 0, 1)
return jacobianDouble((Xp, Yp, Zp), A, P)
H = U2 - U1
R = S2 - S1
H2 = (H * H) % P
H3 = (H * H2) % P
U1H2 = (U1 * H2) % P
nx = (R ** 2 - H3 - 2 * U1H2) % P
ny = (R * (U1H2 - nx) - S1 * H3) % P
nz = (H * Zp * Zq) % P
return (nx, ny, nz)
def jacobianMultiply(Xp_Yp_Zp, n, N, A, P):
Xp, Yp, Zp = Xp_Yp_Zp
if Yp == 0 or n == 0:
return (0, 0, 1)
if n == 1:
return (Xp, Yp, Zp)
if n < 0 or n >= N:
return jacobianMultiply((Xp, Yp, Zp), n % N, N, A, P)
if (n % 2) == 0:
return jacobianDouble(jacobianMultiply((Xp, Yp, Zp), n // 2, N, A, P), A, P)
if (n % 2) == 1:
return jacobianAdd(jacobianDouble(jacobianMultiply((Xp, Yp, Zp), n // 2, N, A, P), A, P), (Xp, Yp, Zp), A, P)
class PrivateKey:
def __init__(self, curve=sm2p256v1, secret=None):
self.curve = curve
self.secret = secret or SystemRandom().randrange(1, curve.N)
def publicKey(self):
curve = self.curve
xPublicKey, yPublicKey = multiply((curve.Gx, curve.Gy), self.secret, A=curve.A, P=curve.P, N=curve.N)
return PublicKey(xPublicKey, yPublicKey, curve)
def toString(self):
return "{}".format(str(hex(self.secret))[2:].zfill(64))
class PublicKey:
def __init__(self, x, y, curve):
self.x = x
self.y = y
self.curve = curve
def toString(self, compressed=True):
return {
True: str(hex(self.x))[2:],
False: "{}{}".format(str(hex(self.x))[2:].zfill(64), str(hex(self.y))[2:].zfill(64))
}.get(compressed)
def create_key_pair():
priKey = PrivateKey()
pubKey = priKey.publicKey()
return priKey.toString(),pubKey.toString(compressed = False)
if __name__ == "__main__":
priKey = PrivateKey()
pubKey = priKey.publicKey()
print(priKey.toString())
print(pubKey.toString(compressed = False))
- 初始化
CryptSM2
import base64
import binascii
from gmssl import sm2, func
#16進制的公鑰和私鑰
private_key = '00B9AB0B828FF68872F21A837FC303668428DEA11DCD1B24429D0C99E24EED83D5'
public_key = 'B9C9A6E04E9C91F7BA880429273747D7EF5DDEB0BB2FF6317EB00BEF331A83081A6994B8993F3F5D6EADDDB81872266C87C018FB4162F5AF347B483E24620207'
sm2_crypt = sm2.CryptSM2(
public_key=public_key, private_key=private_key)
- 加解密算法
#數據和加密后數據為bytes類型
data = b"111"
enc_data = sm2_crypt.encrypt(data)
dec_data =sm2_crypt.decrypt(enc_data)
assert dec_data == data
- 簽名和驗簽算法
data = b"111" # bytes類型
random_hex_str = func.random_hex(sm2_crypt.para_len)
sign = sm2_crypt.sign(data, random_hex_str) # 16進制
assert sm2_crypt.verify(sign, data) # 16進制
- 調用SM3算法的簽名和驗簽算法
data = b"111" # bytes類型
sign = sm2_crypt.sign_with_sm3(data) # 16進制
assert sm2_crypt.verify_with_sm3(sign, data) # 16進制
SM3算法
SM3主要用於數字簽名及驗證、消息認證碼生成及驗證、隨機數生成等,其算法公開。據國家密碼管理局表示,其安全性及效率與SHA-256相當。
在python的gmssl中,SM3算法的用法如下:
- hash運算
#數據和加密后數據為bytes類型
data = b"111" # bytes類型
y = sm3.sm3_hash(func.bytes_to_list(data))
print(y)
SM4算法
國密SM4(無線局域網SMS4)算法, 一個分組算法, 分組長度為128bit, 密鑰長度為128bit, 算法具體內容參照SM4算法。
gmssl是包含國密SM4算法的Python實現, 提供了 encrypt_ecb
、 decrypt_ecb
、 encrypt_cbc
、 decrypt_cbc
等函數用於加密解密, 用法如下:
- 初始化
CryptSM4
from gmssl.sm4 import CryptSM4, SM4_ENCRYPT, SM4_DECRYPT
key = b'3l5butlj26hvv313'
value = b'111' # bytes類型
iv = b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' # bytes類型
crypt_sm4 = CryptSM4()
- ECB 模式加密和解密(無需初始向量)
crypt_sm4.set_key(key, SM4_ENCRYPT)
encrypt_value = crypt_sm4.crypt_ecb(value) # bytes類型
crypt_sm4.set_key(key, SM4_DECRYPT)
decrypt_value = crypt_sm4.crypt_ecb(encrypt_value) # bytes類型
assert value == decrypt_value
- CBC 模式加密和解密(需要初始向量)
crypt_sm4.set_key(key, SM4_ENCRYPT)
encrypt_value = crypt_sm4.crypt_cbc(iv , value) # bytes類型
crypt_sm4.set_key(key, SM4_DECRYPT)
decrypt_value = crypt_sm4.crypt_cbc(iv , encrypt_value) # bytes類型
assert value == decrypt_value
歡迎關注“rocedu”微信公眾號(手機上長按二維碼)
做中教,做中學,實踐中共同進步!
-
版權聲明:自由轉載-非商用-非衍生-保持署名| Creative Commons BY-NC-ND 3.0
如果你覺得本文對你有幫助,請點一下左下角的“好文要頂”和“收藏該文”