Hive執行報錯org.apache.hadoop.yarn.exceptions.YarnRuntimeException: java.lang.InterruptedException: sleep interrupted


報錯日志如下:(肯定有時報錯信息不准確,不能准確定位問題出現在哪里)

org.apache.hadoop.yarn.exceptions.YarnRuntimeException: java.lang.InterruptedException: sleep interrupted
	at org.apache.hadoop.mapred.ClientServiceDelegate.invoke(ClientServiceDelegate.java:348)
	at org.apache.hadoop.mapred.ClientServiceDelegate.getJobStatus(ClientServiceDelegate.java:428)
	at org.apache.hadoop.mapred.YARNRunner.getJobStatus(YARNRunner.java:568)
	at org.apache.hadoop.mapreduce.Job$1.run(Job.java:323)
	at org.apache.hadoop.mapreduce.Job$1.run(Job.java:320)
	at java.security.AccessController.doPrivileged(Native Method)
	at javax.security.auth.Subject.doAs(Subject.java:422)
	at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1657)
	at org.apache.hadoop.mapreduce.Job.updateStatus(Job.java:320)
	at org.apache.hadoop.mapreduce.Job.getJobState(Job.java:352)
	at org.apache.hadoop.mapred.JobClient$NetworkedJob.getJobState(JobClient.java:300)
	at org.apache.hadoop.hive.ql.exec.mr.HadoopJobExecHelper.progress(HadoopJobExecHelper.java:244)
	at org.apache.hadoop.hive.ql.exec.mr.HadoopJobExecHelper.progress(HadoopJobExecHelper.java:549)
	at org.apache.hadoop.hive.ql.exec.mr.ExecDriver.execute(ExecDriver.java:438)
	at org.apache.hadoop.hive.ql.exec.mr.MapRedTask.execute(MapRedTask.java:137)
	at org.apache.hadoop.hive.ql.exec.Task.executeTask(Task.java:160)
	at org.apache.hadoop.hive.ql.exec.TaskRunner.runSequential(TaskRunner.java:88)
	at org.apache.hadoop.hive.ql.exec.TaskRunner.run(TaskRunner.java:75)
Caused by: java.lang.InterruptedException: sleep interrupted
	at java.lang.Thread.sleep(Native Method)
	at org.apache.hadoop.mapred.ClientServiceDelegate.invoke(ClientServiceDelegate.java:345)
	... 17 more
Total MapReduce CPU Time Spent: -2 msec
Job Submission failed with exception 'org.apache.hadoop.yarn.exceptions.YarnRuntimeException(java.lang.InterruptedException: sleep interrupted)'

 

或者如下:

2021-10-31 09:00:11,340 [Thread-72] ERROR com.hadoop.compression.lzo.GPLNativeCodeLoader  - Could not load native gpl library
java.lang.UnsatisfiedLinkError: /home/pirate/dev/disk-5/tmp/yarn-local/usercache/pirate/appcache/application_1635150008466_34289/container_1635150008466_34289_01_000001/tmp/unpacked-3959672880919352106-libgplcompression.so: /home/pirate/dev/disk-5/tmp/yarn-local/usercache/pirate/appcache/application_1635150008466_34289/container_1635150008466_34289_01_000001/tmp/unpacked-3959672880919352106-libgplcompression.so: failed to map segment from shared object: Operation not permitted
	at java.lang.ClassLoader$NativeLibrary.load(Native Method)
	at java.lang.ClassLoader.loadLibrary0(ClassLoader.java:1941)
	at java.lang.ClassLoader.loadLibrary(ClassLoader.java:1824)
	at java.lang.Runtime.load0(Runtime.java:809)
	at java.lang.System.load(System.java:1086)
	at com.hadoop.compression.lzo.GPLNativeCodeLoader.<clinit>(GPLNativeCodeLoader.java:51)
	at com.hadoop.compression.lzo.LzoCodec.<clinit>(LzoCodec.java:71)
	at java.lang.Class.forName0(Native Method)
	at java.lang.Class.forName(Class.java:348)
	at org.apache.hadoop.conf.Configuration.getClassByNameOrNull(Configuration.java:2134)
	at org.apache.hadoop.conf.Configuration.getClassByName(Configuration.java:2099)
	at org.apache.hadoop.io.compress.CompressionCodecFactory.getCodecClasses(CompressionCodecFactory.java:132)
	at org.apache.hadoop.io.compress.CompressionCodecFactory.<init>(CompressionCodecFactory.java:179)
	at org.apache.hadoop.mapred.lib.CombineFileInputFormat.isSplitable(CombineFileInputFormat.java:159)
	at org.apache.hadoop.mapred.lib.CombineFileInputFormat.isSplitable(CombineFileInputFormat.java:151)
	at org.apache.hadoop.mapreduce.lib.input.CombineFileInputFormat.getMoreSplits(CombineFileInputFormat.java:283)
	at org.apache.hadoop.mapreduce.lib.input.CombineFileInputFormat.getSplits(CombineFileInputFormat.java:239)
	at org.apache.hadoop.mapred.lib.CombineFileInputFormat.getSplits(CombineFileInputFormat.java:75)
	at org.apache.hadoop.hive.shims.HadoopShimsSecure$CombineFileInputFormatShim.getSplits(HadoopShimsSecure.java:309)
	at org.apache.hadoop.hive.ql.io.CombineHiveInputFormat.getCombineSplits(CombineHiveInputFormat.java:470)
	at org.apache.hadoop.hive.ql.io.CombineHiveInputFormat.getSplits(CombineHiveInputFormat.java:571)
	at org.apache.hadoop.mapreduce.JobSubmitter.writeOldSplits(JobSubmitter.java:328)
	at org.apache.hadoop.mapreduce.JobSubmitter.writeSplits(JobSubmitter.java:320)
	at org.apache.hadoop.mapreduce.JobSubmitter.submitJobInternal(JobSubmitter.java:196)
	at org.apache.hadoop.mapreduce.Job$10.run(Job.java:1290)
	at org.apache.hadoop.mapreduce.Job$10.run(Job.java:1287)
	at java.security.AccessController.doPrivileged(Native Method)
	at javax.security.auth.Subject.doAs(Subject.java:422)
	at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1657)
	at org.apache.hadoop.mapreduce.Job.submit(Job.java:1287)
	at org.apache.hadoop.mapred.JobClient$1.run(JobClient.java:575)
	at org.apache.hadoop.mapred.JobClient$1.run(JobClient.java:570)
	at java.security.AccessController.doPrivileged(Native Method)
	at javax.security.auth.Subject.doAs(Subject.java:422)
	at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1657)
	at org.apache.hadoop.mapred.JobClient.submitJobInternal(JobClient.java:570)
	at org.apache.hadoop.mapred.JobClient.submitJob(JobClient.java:561)
	at org.apache.hadoop.hive.ql.exec.mr.ExecDriver.execute(ExecDriver.java:432)
	at org.apache.hadoop.hive.ql.exec.mr.MapRedTask.execute(MapRedTask.java:137)
	at org.apache.hadoop.hive.ql.exec.Task.executeTask(Task.java:160)
	at org.apache.hadoop.hive.ql.exec.TaskRunner.runSequential(TaskRunner.java:88)
	at org.apache.hadoop.hive.ql.exec.TaskRunner.run(TaskRunner.java:75)
2021-10-31 09:00:11,341 [Thread-72] ERROR com.hadoop.compression.lzo.LzoCodec  - Cannot load native-lzo without native-hadoop

 

排查hive腳本發現,Hive指定優化參數如下:

set hive.exec.compress.output=true;
set mapred.output.compression.codec=org.apache.hadoop.io.compress.SnappyCodec;
set mapred.output.compression.type=BLOCK;
set hive.exec.dynamic.partition.mode=nonstrict;
set hive.exec.dynamic.partition=true;
set hive.auto.convert.join=true;
set mapreduce.map.memory.mb=40960;
set mapreduce.reduce.memory.mb=40960;
set mapred.child.java.opts=-Xmx1536m;
set mapreduce.job.reduce.slowstart.completedmaps=0.8;
set hive.exec.parallel=true;

考慮可能是mapreduce.map.memory.mb 或者  mapreduce.reduce.memory.mb參數配置過大引起的,這兩個參數代表需要向yarn container中申請的內存大小,查找Hadoop yarn-site.xml配置文件發現如下配置:

<property>
<name>yarn.scheduler.maximum-allocation-mb</name>
<value>30720</value>
</property>

於是將上述參數調小至此參數范圍內,重新提交腳本,發現腳本執行成功;

 

總結:

Mapper/Reducer階段JVM堆內存溢出參數調優
目前MapReduce主要通過兩個組參數去控制內存:(將如下參數調大)

Maper:
mapreduce.map.java.opts=-Xmx2048m(默認參數,表示jvm堆內存,注意是mapreduce不是mapred)
mapreduce.map.memory.mb=2304(container的內存)

Reducer:
mapreduce.reduce.java.opts=-=-Xmx2048m(默認參數,表示jvm堆內存)
mapreduce.reduce.memory.mb=2304(container的內存)

注意:因為在yarn container這種模式下,map/reduce task是運行在Container之中的,
所以上面提到的mapreduce.map(reduce).memory.mb大小都大於mapreduce.map(reduce).java.opts值的大小。
mapreduce.{map|reduce}.java.opts能夠通過Xmx設置JVM最大的heap的使用,一般設置為0.75倍的memory.mb,因為需要為java code等預留些空間

參考:https://zhuanlan.zhihu.com/p/90953401


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM