Kubernetes二進制(單/多master)部署
- Kubernetes二進制(單/多master)部署
- 一、常見的K8S部署方式
- 二、K8S單(Master)節點二進制部署
- 1. 環境准備
- 2. 部署etcd集群
- 3. 部署docker引擎(所有node節點)
- 4. flannel網絡配置
- 5. 部署master組件(在master01節點上操作)
- 5.1 編寫apiserver.sh/scheduler.sh/controller-manager.sh
- 5.1.1 apiserver.sh
- 5.2 創建kubernetes工作目錄
- 5.3 生成CA證書、相關組件的證書和私鑰
- 5.4 復制CA證書、apiserver相關證書和私鑰到kubernetes工作目錄的ssl子目錄中
- 5.5 下載或上傳kubernetes安裝包到/opt/k8s目錄,並解壓
- 5.6 復制master組件的關鍵命令文件到kubernetes工作目錄的bin子目錄中
- 5.7 創建bootstrap token認證文件
- 5.8 二進制文件、token、證書都准備好后,開啟apiserver服務
- 5.9 檢查
- 5.10 啟動scheduler服務
- 5.11 啟動controller-manager服務
- 5.12 查看master節點狀態
- 6. 部署Worker Node組件
- 7. K8S單節點測試
- 三、K8S多(Master)節點二進制部署(在以上部署完成的情況下)
一、常見的K8S部署方式
1. Minikube
Minikube是一個工具,可以在本地快速運行一個單節點微型K8S,僅用於學習、預覽K8S的一些特性使用
http://kubernetes.io/docs/setup/minikube
2. Kubeadmin
Kubeadmin也是一個工具,提供kubeadm init和kubeadm join,用於快速部署K8S集群,相對簡單。
http://kubernetes.io/docs/reference/setup-tools/kubeadm/kubeadm/
3. 二進制安裝部署
生產首選,從官方下載發行版的二進制包,手動部署每個組件和自簽TLS證書,組成K8S集群,新手推薦。
http://github.com/kubernetes/kubernetes/releases
4. 小結
Kubeadm降低部署門檻,但屏蔽了很多細節,遇到問題很難排查。如果想更容易可控,推薦使用二進制包部署Kubernetes集群,雖然手動部署麻煩點,期間可以學習很多工作原理,也利於后期維護。
二、K8S單(Master)節點二進制部署
1. 環境准備
1.1 服務器配置
服務器 | 主機名 | IP地址 | 主要組件/說明 |
---|---|---|---|
master01節點+etcd01節點 | master01 | 192.168.122.10 | kube-apiserver kube-controller-manager kube-schedular etcd |
node01節點+etcd02節點 | node01 | 192.168.122.11 | kubelet kube-proxy docker flannel |
node02節點+etcd03節點 | node01 | 192.168.122.12 | kubelet kube-proxy docker flannel |
1.2 關閉防火牆
systemctl disable --now firewalld
setenforce 0
sed -i 's/enforcing/disabled/' /etc/selinux/config
1.3 修改主機名
hostnamectl set-hostname [ ]
su
1.4 關閉swap
swapoff -a
sed -ri 's/.*swap.*/#&/' /etc/fstab
1.5 在master添加hosts
cat >> /etc/hosts << EOF
192.168.122.10 master01
192.168.122.11 node01
192.168.122.12 node02
EOF
1.6 將橋接的IPv4流量傳遞到iptables的鏈
cat > /etc/sysctl.d/k8s.conf << EOF
net.bridge.bridge-nf-call-ip6tables = 1
net.bridge.bridge-nf-call-iptables = 1
EOF
sysctl --system
1.7 時間同步
yum install ntpdate -y
ntpdate time.windows.com
2. 部署etcd集群
2.1 etcd概述
2.1.1 etcd簡介
etcd是CoreOS團隊於2013年6月發起的開源項目,它的目標是一個高可用的分布式鍵值(key-value)數據庫。etcd內部采用raft協議作為一致性算法,etcd是go語言編寫的。
2.1.2 etcd的特點
etcd作為服務發現系統,有以下的特點:
簡單:安裝配置簡單,而且提供了HTTP API進行交互,使用也很簡單
安全:支持SSL證書驗證
快速:單實例支持每秒2k+讀寫操作
可靠:采用raft算法,實現分布式系統數據的可用性和一致性
2.1.3 etcd端口
etcd目前默認使用2379端口提供HTTP API服務,2380端口和peer通信(這兩個端口已經被IANA(互聯網數字分配機構)官方預留給etcd)。即etcd默認使用2379端口對外為客戶端提供通訊,使用端口2380來進行服務器間內部通訊。
etcd在生產環境中一般推薦集群方式部署。由於etcd的leader選舉機制,要求至少為3台或以上的奇數台。
2.2 簽發證書(Master01)
CFSSL是CloudFlare公司開源的一款PKI/TLS工具。CFSSL包含一個命令行工具和一個用於簽名、驗證和捆綁TLS證書的HTTP API服務,使用Go語言編寫。
CFSSL使用配置文件生成證書,因此自簽之前,需要生成它識別的json格式的配置文件,CFSSL提供了方便的命令行生成配置文件。
CFSSL用來為etcd提供TLS證書,它支持簽三種類型的證書:
- client證書,服務端連接客戶端時攜帶的證書,用於客戶端驗證服務端身份,如kube-apiserver訪問etcd;
- server證書,客戶端連接服務端時攜帶的證書,用於服務端驗證客戶端身份,如etcd對外提供服務;
- peer證書,相互之間連接時使用的證書,如etcd節點之間進行驗證和通信。
注:在本次實驗中使用同一套證書進行認證。
2.2.1 下載證書制作工具
[root@master01 ~]# wget https://pkg.cfssl.org/R1.2/cfssl_linux-amd64 -O /usr/local/bin/cfssl
[root@master01 ~]# wget https://pkg.cfssl.org/R1.2/cfssljson_linux-amd64 -O /usr/local/bin/cfssljson
[root@master01 ~]# wget https://pkg.cfssl.org/R1.2/cfssl-certinfo_linux-amd64 -O /usr/local/bin/cfssl-certinfo
[root@master01 ~]# chmod +x /usr/local/bin/cfssl*
或使用curl -L下載
curl -L https://pkg.cfssl.org/R1.2/cfssl_linux-amd64 -o /usr/local/bin/cfssl
curl -L https://pkg.cfssl.org/R1.2/cfssljson_linux-amd64 -o /usr/local/bin/cfssljson
curl -L https://pkg.cfssl.org/R1.2/cfssl-certinfo_linux-amd64 -o /usr/local/bin/cfssl-certinfo
cfssl:證書簽發的工具命令
cfssljson:將cfssl生成的證書(json格式)變為文件承載式證書
cfssl-certinfo:驗證證書的信息
“cfssl-certinfo -cert <證書名稱> ”可查看證書的信息
2.2.2 創建k8s工作目錄
[root@master01 ~]# mkdir /opt/k8s
[root@master01 ~]# cd /opt/k8s
2.2.3 編寫etcd-cert.sh和etcd.sh腳本
etcd-cert.sh
[root@master01 k8s]# chmod +x etcd-cert.sh
[root@master01 k8s]# cat etcd-cert.sh
#!/bin/bash
#配置證書生成策略,讓 CA 軟件知道頒發有什么功能的證書,生成用來簽發其他組件證書的根證書
cat > ca-config.json <<EOF
{
"signing": {
"default": {
"expiry": "87600h"
},
"profiles": {
"www": {
"expiry": "87600h",
"usages": [
"signing",
"key encipherment",
"server auth",
"client auth"
]
}
}
}
}
EOF
#ca-config.json:可以定義多個 profiles,分別指定不同的過期時間、使用場景等參數;
#后續在簽名證書時會使用某個 profile;此實例只有一個 www 模板。
#expiry:指定了證書的有效期,87600h 為10年,如果用默認值一年的話,證書到期后集群會立即宕掉
#signing:表示該證書可用於簽名其它證書;生成的 ca.pem 證書中 CA=TRUE;
#key encipherment:表示使用非對稱密鑰加密,如 RSA 加密;
#server auth:表示client可以用該 CA 對 server 提供的證書進行驗證;
#client auth:表示server可以用該 CA 對 client 提供的證書進行驗證;
#注意標點符號,最后一個字段一般是沒有逗號的。
#-----------------------
#生成CA證書和私鑰(根證書和私鑰)
#特別說明: cfssl和openssl有一些區別,openssl需要先生成私鑰,然后用私鑰生成請求文件,最后生成簽名的證書和私鑰等,但是cfssl可以直接得到請求文件。
cat > ca-csr.json <<EOF
{
"CN": "etcd",
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "CN",
"L": "Beijing",
"ST": "Beijing"
}
]
}
EOF
#CN:Common Name,瀏覽器使用該字段驗證網站或機構是否合法,一般寫的是域名
#key:指定了加密算法,一般使用rsa(size:2048)
#C:Country,國家
#ST:State,州,省
#L:Locality,地區,城市
#O: Organization Name,組織名稱,公司名稱
#OU: Organization Unit Name,組織單位名稱,公司部門
cfssl gencert -initca ca-csr.json | cfssljson -bare ca
#生成的文件:
#ca-key.pem:根證書私鑰
#ca.pem:根證書
#ca.csr:根證書簽發請求文件
#cfssl gencert -initca <CSRJSON>:使用 CSRJSON 文件生成生成新的證書和私鑰。如果不添加管道符號,會直接把所有證書內容輸出到屏幕。
#注意:CSRJSON 文件用的是相對路徑,所以 cfssl 的時候需要 csr 文件的路徑下執行,也可以指定為絕對路徑。
#cfssljson 將 cfssl 生成的證書(json格式)變為文件承載式證書,-bare 用於命名生成的證書文件。
#-----------------------
#生成 etcd 服務器證書和私鑰
cat > server-csr.json <<EOF
{
"CN": "etcd",
"hosts": [
"192.168.122.10",
"192.168.122.11",
"192.168.122.12"
],
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "CN",
"L": "BeiJing",
"ST": "BeiJing"
}
]
}
EOF
#hosts:將所有 etcd 集群節點添加到 host 列表,需要指定所有 etcd 集群的節點 ip 或主機名不能使用網段,新增 etcd 服務器需要重新簽發證書。
cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -profile=www server-csr.json | cfssljson -bare server
#生成的文件:
#server.csr:服務器的證書請求文件
#server-key.pem:服務器的私鑰
#server.pem:服務器的數字簽名證書
#-config:引用證書生成策略文件 ca-config.json
#-profile:指定證書生成策略文件中的的使用場景,比如 ca-config.json 中的 www
etcd.sh
[root@master01 k8s]# chmod +x etcd.sh
[root@master01 k8s]# cat etcd.sh
#!/bin/bash
# example: ./etcd.sh etcd01 192.168.80.10 etcd02=https://192.168.80.11:2380,etcd03=https://192.168.80.12:2380
#創建etcd配置文件/opt/etcd/cfg/etcd
ETCD_NAME=$1
ETCD_IP=$2
ETCD_CLUSTER=$3
WORK_DIR=/opt/etcd
cat > $WORK_DIR/cfg/etcd <<EOF
#[Member]
ETCD_NAME="${ETCD_NAME}"
ETCD_DATA_DIR="/var/lib/etcd/default.etcd"
ETCD_LISTEN_PEER_URLS="https://${ETCD_IP}:2380"
ETCD_LISTEN_CLIENT_URLS="https://${ETCD_IP}:2379"
#[Clustering]
ETCD_INITIAL_ADVERTISE_PEER_URLS="https://${ETCD_IP}:2380"
ETCD_ADVERTISE_CLIENT_URLS="https://${ETCD_IP}:2379"
ETCD_INITIAL_CLUSTER="etcd01=https://${ETCD_IP}:2380,${ETCD_CLUSTER}"
ETCD_INITIAL_CLUSTER_TOKEN="etcd-cluster"
ETCD_INITIAL_CLUSTER_STATE="new"
EOF
#Member:成員配置
#ETCD_NAME:節點名稱,集群中唯一。成員名字,集群中必須具備唯一性,如etcd01
#ETCD_DATA_DIR:數據目錄。指定節點的數據存儲目錄,這些數據包括節點ID,集群ID,集群初始化配置,Snapshot文件,若未指定-wal-dir,還會存儲WAL文件;如果不指定會用缺省目錄
#ETCD_LISTEN_PEER_URLS:集群通信監聽地址。用於監聽其他member發送信息的地址。ip為全0代表監聽本機所有接口
#ETCD_LISTEN_CLIENT_URLS:客戶端訪問監聽地址。用於監聽etcd客戶發送信息的地址。ip為全0代表監聽本機所有接口
#Clustering:集群配置
#ETCD_INITIAL_ADVERTISE_PEER_URLS:集群通告地址。其他member使用,其他member通過該地址與本member交互信息。一定要保證從其他member能可訪問該地址。靜態配置方式下,該參數的value一定要同時在--initial-cluster參數中存在
#ETCD_ADVERTISE_CLIENT_URLS:客戶端通告地址。etcd客戶端使用,客戶端通過該地址與本member交互信息。一定要保證從客戶側能可訪問該地址
#ETCD_INITIAL_CLUSTER:集群節點地址。本member使用。描述集群中所有節點的信息,本member根據此信息去聯系其他member
#ETCD_INITIAL_CLUSTER_TOKEN:集群Token。用於區分不同集群。本地如有多個集群要設為不同
#ETCD_INITIAL_CLUSTER_STATE:加入集群的當前狀態,new是新集群,existing表示加入已有集群。
#創建etcd.service服務管理文件
cat > /usr/lib/systemd/system/etcd.service <<EOF
[Unit]
Description=Etcd Server
After=network.target
After=network-online.target
Wants=network-online.target
[Service]
Type=notify
EnvironmentFile=${WORK_DIR}/cfg/etcd
ExecStart=${WORK_DIR}/bin/etcd \
--name=\${ETCD_NAME} \
--data-dir=\${ETCD_DATA_DIR} \
--listen-peer-urls=\${ETCD_LISTEN_PEER_URLS} \
--listen-client-urls=\${ETCD_LISTEN_CLIENT_URLS},http://127.0.0.1:2379 \
--advertise-client-urls=\${ETCD_ADVERTISE_CLIENT_URLS} \
--initial-advertise-peer-urls=\${ETCD_INITIAL_ADVERTISE_PEER_URLS} \
--initial-cluster=\${ETCD_INITIAL_CLUSTER} \
--initial-cluster-token=\${ETCD_INITIAL_CLUSTER_TOKEN} \
--initial-cluster-state=new \
--cert-file=${WORK_DIR}/ssl/server.pem \
--key-file=${WORK_DIR}/ssl/server-key.pem \
--trusted-ca-file=${WORK_DIR}/ssl/ca.pem \
--peer-cert-file=${WORK_DIR}/ssl/server.pem \
--peer-key-file=${WORK_DIR}/ssl/server-key.pem \
--peer-trusted-ca-file=${WORK_DIR}/ssl/ca.pem
Restart=on-failure
LimitNOFILE=65536
[Install]
WantedBy=multi-user.target
EOF
#--listen-client-urls:用於指定etcd和客戶端的連接端口
#--advertise-client-urls:用於指定etcd服務器之間通訊的端口,etcd有要求,如果--listen-client-urls被設置了,那么就必須同時設置--advertise-client-urls,所以即使設置和默認相同,也必須顯式設置
#--peer開頭的配置項用於指定集群內部TLS相關證書(peer 證書),這里全部都使用同一套證書認證
#不帶--peer開頭的的參數是指定 etcd 服務器TLS相關證書(server 證書),這里全部都使用同一套證書認證
systemctl daemon-reload
systemctl enable etcd
systemctl restart etcd
2.2.4 生成CA證書、etcd服務器證書以及私鑰
[root@master01 k8s]# mkdir /opt/k8s/etcd-cert
[root@master01 k8s]# mv etcd-cert.sh etcd-cert/
[root@master01 k8s]# cd /opt/k8s/etcd-cert/
[root@master01 etcd-cert]# ./etcd-cert.sh
#生成CA證書、etcd服務器證書以及私鑰
[root@master01 etcd-cert]# ls
ca-config.json ca.csr ca-csr.json ca-key.pem ca.pem etcd-cert.sh server.csr server-csr.json server-key.pem server.pem
2.3 啟動etcd服務
2.3.1 安裝etcd服務
etcd二進制包地址:https://github.com/etcd-io/etcd/releases
[root@master01 etcd-cert]# cd /opt/k8s
[root@master01 k8s]# rz -E
#傳入etcd安裝包etcd-v3.3.10-linux-amd64.tar.gz
rz waiting to receive.
[root@master01 k8s]# tar zxvf etcd-v3.3.10-linux-amd64.tar.gz
[root@master01 k8s]# ls etcd-v3.3.10-linux-amd64
Documentation etcd etcdctl README-etcdctl.md README.md READMEv2-etcdctl.md
etcd就是etcd服務的啟動命令,后面可跟各種啟動參數
etcdctl主要為etcd服務提供了命令行操作
2.3.2 創建用於存放etcd配置文件、命令文件、證書的目錄
[root@master01 k8s]# mkdir -p /opt/etcd/{cfg,bin,ssl}
[root@master01 k8s]# mv /opt/k8s/etcd-v3.3.10-linux-amd64/etcd /opt/k8s/etcd-v3.3.10-linux-amd64/etcdctl /opt/etcd/bin/
[root@master01 k8s]# cp /opt/k8s/etcd-cert/
ca-config.json ca-csr.json ca.pem server.csr server-key.pem
ca.csr ca-key.pem etcd-cert.sh server-csr.json server.pem
[root@master01 k8s]# cp /opt/k8s/etcd-cert/*.pem /opt/etcd/ssl/
2.3.3 啟動etcd.sh腳本
[root@master01 k8s]# ls
etcd-cert etcd.sh etcd-v3.3.10-linux-amd64 etcd-v3.3.10-linux-amd64.tar.
[root@master01 k8s]# ./etcd.sh etcd01 192.168.122.10 etcd02=https://192.168.122.11:2380,etcd03=https://192.168.122.12:2380
進入卡住狀態等待其他節點加入,這里需要三台etcd服務同時啟動,如果只啟動其中一台后,服務會卡在那里,直到集群中所有etcd節點都已啟動,可忽略這個情況
另外打開一個窗口查看etcd進程是否正常
[root@master01 ~]# ps -ef | grep etcd
root 69202 67516 0 16:52 pts/0 00:00:00 /bin/bash ./etcd.sh etcd01 192.168.122.10 etcd02=https://192.168.122.11:2380,etcd03=https://192.168.122.12:2380
root 69261 69202 0 16:52 pts/0 00:00:00 systemctl restart etcd
root 69267 1 1 16:52 ? 00:00:00 /opt/etcd/bin/etcd --name=etcd01 --data-dir=/var/lib/etcd/default.etcd --listen-peer-urls=https://192.168.122.10:2380 --listen-client-urls=https://192.168.122.10:2379,http://127.0.0.1:2379 --advertise-client-urls=https://192.168.122.10:2379 --initial-advertise-peer-urls=https://192.168.122.10:2380 --initial-cluster=etcd01=https://192.168.122.10:2380,etcd02=https://192.168.122.11:2380,etcd03=https://192.168.122.12:2380 --initial-cluster-token=etcd-cluster --initial-cluster-state=new --cert-file=/opt/etcd/ssl/server.pem --key-file=/opt/etcd/ssl/server-key.pem --trusted-ca-file=/opt/etcd/ssl/ca.pem --peer-cert-file=/opt/etcd/ssl/server.pem --peer-key-file=/opt/etcd/ssl/server-key.pem --peer-trusted-ca-file=/opt/etcd/ssl/ca.pem
root 69330 69277 0 16:53 pts/1 00:00:00 grep --color=auto etcd
2.3.4 把etcd相關證書文件和命令文件全部拷貝到另外兩個etcd集群節點
[root@master01 k8s]# scp -r /opt/etcd/ root@192.168.122.11:/opt/etcd/
etcd 100% 516 1.1MB/s 00:00
etcd 100% 18MB 98.8MB/s 00:00
etcdctl 100% 15MB 153.9MB/s 00:00
ca-key.pem 100% 1679 3.2MB/s 00:00
ca.pem 100% 1257 343.6KB/s 00:00
server-key.pem 100% 1675 1.3MB/s 00:00
server.pem 100% 1334 3.0MB/s 00:00
[root@master01 k8s]# scp -r /opt/etcd/ root@192.168.122.12:/opt/etcd/
etcd 100% 516 1.0MB/s 00:00
etcd 100% 18MB 116.2MB/s 00:00
etcdctl 100% 15MB 147.9MB/s 00:00
ca-key.pem 100% 1679 1.9MB/s 00:00
ca.pem 100% 1257 443.4KB/s 00:00
server-key.pem 100% 1675 2.7MB/s 00:00
server.pem 100% 1334 336.3KB/s 00:00
2.3.5 把etcd服務管理文件拷貝到了另外兩個etcd集群節點
[root@master01 k8s]# scp /usr/lib/systemd/system/etcd.service root@192.168.122.11:/usr/lib/systemd/system/
etcd.service 100% 923 1.3MB/s 00:00
[root@master01 k8s]# scp /usr/lib/systemd/system/etcd.service root@192.168.122.12:/usr/lib/systemd/system/
etcd.service 100% 923 1.5MB/s 00:00
2.3.6 修改另外兩個etcd集群節點的配置文件
node01
[root@node01 ~]# cd /opt/etcd/cfg/
[root@node01 cfg]# ls
etcd
[root@node01 cfg]# vim etcd
#[Member]
ETCD_NAME="etcd02"
ETCD_DATA_DIR="/var/lib/etcd/default.etcd"
ETCD_LISTEN_PEER_URLS="https://192.168.122.11:2380"
ETCD_LISTEN_CLIENT_URLS="https://192.168.122.11:2379"
#[Clustering]
ETCD_INITIAL_ADVERTISE_PEER_URLS="https://192.168.122.11:2380"
ETCD_ADVERTISE_CLIENT_URLS="https://192.168.122.11:2379"
ETCD_INITIAL_CLUSTER="etcd01=https://192.168.122.10:2380,etcd02=https://192.168.122.11:2380,etcd03=https://192.168.122.12:2380"
ETCD_INITIAL_CLUSTER_TOKEN="etcd-cluster"
ETCD_INITIAL_CLUSTER_STATE="new"
[root@node01 cfg]# systemctl daemon-reload
[root@node01 cfg]# systemctl enable --now etcd.service
[root@node01 cfg]# systemctl status etcd
● etcd.service - Etcd Server
Loaded: loaded (/usr/lib/systemd/system/etcd.service; enabled; vendor preset: disabled)
Active: active (running) since 三 2021-10-27 17:11:05 CST; 10s ago
......
node02同上,修改ETCD_NAME"etcd03"以及對應IP即可
2.3.7 檢查集群狀態(Master01)
v2版本查看(默認版本)
[root@master01 k8s]# ln -s /opt/etcd/bin/etcd* /usr/local/bin
#將etcd執行命令軟鏈接到PATH路徑
[root@master01 k8s]# cd /opt/etcd/ssl
[root@master01 ssl]# etcdctl \
> --ca-file=ca.pem \
> --cert-file=server.pem \
> --key-file=server-key.pem \
> --endpoints="https://192.168.122.10:2379,https://192.168.122.11:2379,https://192.168.122.12:2379" \
> cluster-health
member 69d968bf93159205 is healthy: got healthy result from https://192.168.122.11:2379
member 854a51ad82cc5ac2 is healthy: got healthy result from https://192.168.122.12:2379
member aa2f014e32cf986f is healthy: got healthy result from https://192.168.122.10:2379
cluster is healthy
--cert-file:識別HTTPS端使用SSL證書文件
--key-file:使用此SSL密鑰文件標識HTTPS客戶端
--ca-file:使用此CA證書驗證啟用https的服務器的證書
--endpoints:集群中以逗號分隔的機器地址列表
cluster-health:檢查etcd集群的運行狀況
v3版本查看
切換到etcd3版本查看集群節點狀態和成員列表
v2和v3命令略有不同,etcd2和etcd3也是不兼容的,默認版本是v2版本
[root@master01 ~]# export ETCDCTL_API=3
[root@master01 ~]# etcdctl --write-out=table endpoint status
+----------------+------------------+---------+---------+-----------+-----------+------------+
| ENDPOINT | ID | VERSION | DB SIZE | IS LEADER | RAFT TERM | RAFT INDEX |
+----------------+------------------+---------+---------+-----------+-----------+------------+
| 127.0.0.1:2379 | aa2f014e32cf986f | 3.3.10 | 20 kB | false | 976 | 21 |
+----------------+------------------+---------+---------+-----------+-----------+------------+
[root@master01 ~]# etcdctl --write-out=table member list
+------------------+---------+--------+-----------------------------+-----------------------------+
| ID | STATUS | NAME | PEER ADDRS | CLIENT ADDRS |
+------------------+---------+--------+-----------------------------+-----------------------------+
| 69d968bf93159205 | started | etcd02 | https://192.168.122.11:2380 | https://192.168.122.11:2379 |
| 854a51ad82cc5ac2 | started | etcd03 | https://192.168.122.12:2380 | https://192.168.122.12:2379 |
| aa2f014e32cf986f | started | etcd01 | https://192.168.122.10:2380 | https://192.168.122.10:2379 |
+------------------+---------+--------+-----------------------------+-----------------------------+
[root@master01 ~]# export ETCDCTL_API=2
3. 部署docker引擎(所有node節點)
node01
[root@node01 ~]# yum install -y yum-utils device-mapper-persistent-data lvm2
[root@node01 ~]# yum-config-manager --add-repo http://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo
[root@node01 ~]# yum install -y docker-ce docker-ce-cli containerd.io
[root@node01 ~]# systemctl enable --now docker
Created symlink from /etc/systemd/system/multi-user.target.wants/docker.service to /usr/lib/systemd/system/docker.service.
node02同上
4. flannel網絡配置
4.1 K8S中Pod網絡通信
● Pod內容器與容器之間的通信
在同一個Pod內的容器(Pod內的容器是不會跨宿主機的)共享同一個網絡命令空間,相當於它們在同一台機器上一樣,可以用localhost地址訪問彼此的端口。
● 同一個Node內Pod之間的通信
每個Pod都有一個真實的全局IP地址,同一個Node內的不同Pod之間可以直接采用對方Pod的IP地址進行通信,Pod1與Pod2都是通過Veth連接到同一個docker0網橋,網段相同,所以它們之間可以直接通信。
● 不同Node上Pod之間的通信
Pod地址與docker0在同一網段,docker0網段與宿主機網卡是兩個不同的網段,且不同Node之間的通信只能通過宿主機的物理網卡進行。
要想實現不同Node上Pod之間的通信,就必須想辦法通過主機的物理網卡IP地址進行尋址和通信。因此要滿足兩個條件:Pod的IP不能沖突,將Pod的IP和所在的Node的IP關聯起來,通過這個關聯讓不同Node上Pod之間直接通過內網IP地址通信。
4.2 Overlay Network
疊加網絡,在二層或者三層幾乎網絡上疊加的一種虛擬網絡技術模式,該網絡中的主機通過虛擬鏈路隧道連接起來(類似於VPN)。
4.3 VXLAN
將源數據包封裝到UDP中,並使用基礎網絡的IP/MAC作為外層報文頭進行封裝,然后在以太網上傳輸,到達目的地后由隧道端點解封裝並將數據發送給目標地址。
4.4 Flannel簡介
Flannel的功能是讓集群中的不同節點主機創建的Docker容器都具有全集群唯一的虛擬IP地址。
Flannel是Overlay網絡的一種,也是將TCP源數據包封裝在另一種網絡包里面進行路由轉發和通信,目前支持UDP、VXLAN、host-GW三種數據轉發方式。
4.5 Flannel工作原理
數據從node01上Pod的源容器中發出后,經由所在主機的docker0虛擬網卡轉發到flannel.1虛擬網卡,flanneld服務監聽在flanne.1數據網卡的另外一端。
Flannel通過Etcd服務維護了一張節點間的路由表。源主機node01的flanneld服務將原本的數據內容封裝到UDP中后根據自己的路由表通過物理網卡投遞給目的節點node02的flanneld服務,數據到達以后被解包,然后直接進入目的節點的dlannel.1虛擬網卡,之后被轉發到目的主機的docker0虛擬網卡,最后就像本機容器通信一樣由docker0轉發到目標容器。
4.6 ETCD之Flannel提供說明
存儲管理Flannel可分配的IP地址段資源
監控ETCD中每個Pod的實際地址,並在內存中建立維護Pod節點路由表
4.7 Flannel部署
4.7.1 在master01節點上操作
添加flannel網絡配置信息,寫入分配的子網段到etcd中,供flannel使用
[root@master01 ~]# cd /opt/etcd/ssl
[root@master01 ssl]# etcdctl \
> --ca-file=ca.pem \
> --cert-file=server.pem \
> --key-file=server-key.pem \
> --endpoint="https://192.168.122.10:2379,https://192.168.122.11:2379,https://192.168.122.12:2379" \
> set /coreos.com/network/config '{"Network":"172.17.0.0/16","Backend":{"Type":"vxlan"}}'
查看寫入的信息
[root@master01 ssl]# etcdctl \
> --ca-file=ca.pem \
> --cert-file=server.pem \
> --key-file=server-key.pem \
> --endpoint="https://192.168.122.10:2379,https://192.168.122.11:2379,https://192.168.122.12:2379" \
> get /coreos.com/network/config
{"Network":"172.17.0.0/16","Backend":{"Type":"vxlan"}}
set
set /coreos.com/network/config:添加一條網絡配置記錄,這個配置將用於flannel分配給每個docker的虛擬IP地址段
get
Network:用於指定Flannel地址池
Backend:用於指定數據包以什么方式轉發,默認為udp模式,Backend為vxlan比起預設的udp性能相對好一些。
4.7.2 在所有node節點上操作(以node01為例)
4.7.2.1 安裝flannel
[root@node01 ~]# cd /opt
[root@node01 opt]# rz -E
#上傳flannel安裝包flannel-v.0.10.0-linux-amd64.tar.gz到/opt目錄中
rz waiting to receive.
flanneld
#flanneld為主要的執行文件
mk-docker-opts.sh
#mk-docker-opts.sh腳本用於生成Docker啟動參數
README.md
4.7.2.2 編寫flannel.sh腳本
[root@node01 opt]# cat flannel.sh
#!/bin/bash
#定義etcd集群的端點IP地址和對外提供服務的2379端口
#${var:-string}:若變量var為空,則用在命令行中用string來替換;否則變量var不為空時,則用變量var的值來替換,這里的1代表的是位置變量$1
ETCD_ENDPOINTS=${1:-"http://127.0.0.1:2379"}
#創建flanneld配置文件
cat > /opt/kubernetes/cfg/flanneld <<EOF
FLANNEL_OPTIONS="--etcd-endpoints=${ETCD_ENDPOINTS} \\
-etcd-cafile=/opt/etcd/ssl/ca.pem \\
-etcd-certfile=/opt/etcd/ssl/server.pem \\
-etcd-keyfile=/opt/etcd/ssl/server-key.pem"
EOF
#flanneld 本應使用 etcd 客戶端TLS相關證書(client 證書),這里全部都使用同一套證書認證。
#創建flanneld.service服務管理文件
cat > /usr/lib/systemd/system/flanneld.service <<EOF
[Unit]
Description=Flanneld overlay address etcd agent
After=network-online.target network.target
Before=docker.service
[Service]
Type=notify
EnvironmentFile=/opt/kubernetes/cfg/flanneld
ExecStart=/opt/kubernetes/bin/flanneld --ip-masq \$FLANNEL_OPTIONS
ExecStartPost=/opt/kubernetes/bin/mk-docker-opts.sh -k DOCKER_NETWORK_OPTIONS -d /run/flannel/subnet.env
Restart=on-failure
[Install]
WantedBy=multi-user.target
EOF
#flanneld啟動后會使用 mk-docker-opts.sh 腳本生成 docker 網絡相關配置信息
#mk-docker-opts.sh -k DOCKER_NETWORK_OPTIONS:將組合選項鍵設置為環境變量DOCKER_NETWORK_OPTIONS,docker啟動時將使用此變量
#mk-docker-opts.sh -d /run/flannel/subnet.env:指定要生成的docker網絡相關信息配置文件的路徑,docker啟動時候引用此配置
systemctl daemon-reload
systemctl enable flanneld
systemctl restart flanneld
4.7.2.3 創建kubenetes工作目錄
[root@node01 opt]# mkdir -p /opt/kubernetes/{cfg,bin,ssl}
[root@node01 opt]# cd /opt
[root@node01 opt]# mv mk-docker-opts.sh flanneld /opt/kubernetes/bin/
4.7.2.4 啟動flannel服務,開啟flannel網絡功能
[root@node01 opt]# chmod +x flannel.sh
[root@node01 opt]# ./flannel.sh https://192.168.122.10:2379,https://192.168.122.11:2379,https://192.168.122.12:2379
[root@node01 opt]# systemctl status flanneld.service
● flanneld.service - Flanneld overlay address etcd agent
Loaded: loaded (/usr/lib/systemd/system/flanneld.service; enabled; vendor preset: disabled)
Active: active (running) since 三 2021-10-27 19:38:31 CST; 10s ago
......
flannel啟動后會生成一個docker網絡相關信息配置文件/run/flannel/subnet.env,包含了docker要使用flannel通訊的相關參數
node01
[root@node01 opt]# cat /run/flannel/subnet.env
DOCKER_OPT_BIP="--bip=172.17.54.1/24"
DOCKER_OPT_IPMASQ="--ip-masq=false"
DOCKER_OPT_MTU="--mtu=1450"
DOCKER_NETWORK_OPTIONS=" --bip=172.17.54.1/24 --ip-masq=false --mtu=1450"
[root@node01 opt]# ifconfig
docker0: flags=4099<UP,BROADCAST,MULTICAST> mtu 1500
inet 172.17.0.1 netmask 255.255.0.0 broadcast 172.17.255.255
ether 02:42:8b:ec:a9:19 txqueuelen 0 (Ethernet)
RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
......
flannel.1: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1450
inet 172.17.54.0 netmask 255.255.255.255 broadcast 0.0.0.0
inet6 fe80::ec8b:f9ff:fe2b:c8f8 prefixlen 64 scopeid 0x20<link>
ether ee:8b:f9:2b:c8:f8 txqueuelen 0 (Ethernet)
RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
TX errors 0 dropped 26 overruns 0 carrier 0 collisions 0
......
node02
[root@node02 opt]# cat /run/flannel/subnet.env
DOCKER_OPT_BIP="--bip=172.17.97.1/24"
DOCKER_OPT_IPMASQ="--ip-masq=false"
DOCKER_OPT_MTU="--mtu=1450"
DOCKER_NETWORK_OPTIONS=" --bip=172.17.97.1/24 --ip-masq=false --mtu=1450"
[root@node02 opt]# ifconfig
docker0: flags=4099<UP,BROADCAST,MULTICAST> mtu 1500
inet 172.17.0.1 netmask 255.255.0.0 broadcast 172.17.255.255
ether 02:42:0f:e6:9d:50 txqueuelen 0 (Ethernet)
RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
......
flannel.1: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1450
inet 172.17.97.0 netmask 255.255.255.255 broadcast 0.0.0.0
inet6 fe80::d821:a6ff:fef7:a4bf prefixlen 64 scopeid 0x20<link>
ether da:21:a6:f7:a4:bf txqueuelen 0 (Ethernet)
RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
TX errors 0 dropped 27 overruns 0 carrier 0 collisions 0
......
--bip:指定docker啟動時的子網
--ip-masq:設置ipmasq=false關閉snat偽裝策略
--mtu=1450:mtu要留出50字節給外層的vxlan封包的額外開銷使用
4.7.2.5 修改docker0網卡網段與flannel一致
添加docker環境變量
[root@node01 opt]# vim /lib/systemd/system/docker.service
#13行,插入環境文件
EnvironmentFile=/run/flannel/subnet.env
#14行,添加變量$DOCKER_NETWORK_OPTIONS
ExecStart=/usr/bin/dockerd $DOCKER_NETWORK_OPTIONS -H fd:// --containerd=/run/containerd/containerd.sock
[root@node01 opt]# systemctl daemon-reload
[root@node01 opt]# systemctl restart docker
node01
[root@node01 opt]# ifconfig
docker0: flags=4099<UP,BROADCAST,MULTICAST> mtu 1500
inet 172.17.54.1 netmask 255.255.255.0 broadcast 172.17.54.255
ether 02:42:8b:ec:a9:19 txqueuelen 0 (Ethernet)
RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
......
flannel.1: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1450
inet 172.17.54.0 netmask 255.255.255.255 broadcast 0.0.0.0
inet6 fe80::ec8b:f9ff:fe2b:c8f8 prefixlen 64 scopeid 0x20<link>
ether ee:8b:f9:2b:c8:f8 txqueuelen 0 (Ethernet)
RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
TX errors 0 dropped 26 overruns 0 carrier 0 collisions 0
......
node02
[root@node02 opt]# ifconfig
docker0: flags=4099<UP,BROADCAST,MULTICAST> mtu 1500
inet 172.17.97.1 netmask 255.255.255.0 broadcast 172.17.97.255
ether 02:42:0f:e6:9d:50 txqueuelen 0 (Ethernet)
RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
......
flannel.1: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1450
inet 172.17.97.0 netmask 255.255.255.255 broadcast 0.0.0.0
inet6 fe80::d821:a6ff:fef7:a4bf prefixlen 64 scopeid 0x20<link>
ether da:21:a6:f7:a4:bf txqueuelen 0 (Ethernet)
RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
TX errors 0 dropped 27 overruns 0 carrier 0 collisions 0
......
4.7.2.6 容器間跨網通信
node01
[root@node01 opt]# docker run -itd centos:7 bash
[root@node01 opt]# docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
2cec8cb71481 centos:7 "bash" 3 minutes ago Up 3 minutes sleepy_dubinsky
[root@node01 opt]# docker exec -it 2cec8cb71481 bash
[root@2cec8cb71481 /]# ifconfig
bash: ifconfig: command not found
[root@2cec8cb71481 /]# yum install -y net-tools
[root@2cec8cb71481 /]# ifconfig
eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1450
inet 172.17.54.2 netmask 255.255.255.0 broadcast 172.17.54.255
ether 02:42:ac:11:36:02 txqueuelen 0 (Ethernet)
RX packets 26944 bytes 20616702 (19.6 MiB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 13503 bytes 732575 (715.4 KiB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
......
node02
[root@node02 opt]# docker run -itd centos:7 bash
[root@node02 opt]# docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
2a6e09908c6c centos:7 "bash" 4 minutes ago Up 4 minutes nifty_poincare
[root@node02 opt]# docker exec -it 2a6e09908c6c bash
[root@2a6e09908c6c /]# yum install -y net-tools
[root@2a6e09908c6c /]# ifconfig
eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1450
inet 172.17.97.2 netmask 255.255.255.0 broadcast 172.17.97.255
ether 02:42:ac:11:61:02 txqueuelen 0 (Ethernet)
RX packets 26870 bytes 20613730 (19.6 MiB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 12804 bytes 694756 (678.4 KiB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
......
[root@2a6e09908c6c /]# ping -I 172.17.97.2 172.17.54.2
#指定eth0網卡ping其他主機node02中的容器ip
PING 172.17.54.2 (172.17.54.2) from 172.17.97.2 : 56(84) bytes of data.
64 bytes from 172.17.54.2: icmp_seq=1 ttl=62 time=0.350 ms
64 bytes from 172.17.54.2: icmp_seq=2 ttl=62 time=0.276 ms
64 bytes from 172.17.54.2: icmp_seq=3 ttl=62 time=0.342 ms
node01
[root@2cec8cb71481 /]# ping -I 172.17.54.2 172.17.97.2
PING 172.17.97.2 (172.17.97.2) from 172.17.54.2 : 56(84) bytes of data.
64 bytes from 172.17.97.2: icmp_seq=1 ttl=62 time=0.415 ms
64 bytes from 172.17.97.2: icmp_seq=2 ttl=62 time=0.316 ms
5. 部署master組件(在master01節點上操作)
5.1 編寫apiserver.sh/scheduler.sh/controller-manager.sh
5.1.1 apiserver.sh
[root@master01 ~]# cd /opt/k8s
[root@master01 k8s]# cat apiserver.sh
#!/bin/bash
#example: apiserver.sh 192.168.122.10 https://192.168.122.10:2379,https://192.168.122.11:2379,https://192.168.122.12:2379
#創建 kube-apiserver 啟動參數配置文件
MASTER_ADDRESS=$1
ETCD_SERVERS=$2
cat >/opt/kubernetes/cfg/kube-apiserver <<EOF
KUBE_APISERVER_OPTS="--logtostderr=true \\
--v=4 \\
--etcd-servers=${ETCD_SERVERS} \\
--bind-address=${MASTER_ADDRESS} \\
--secure-port=6443 \\
--advertise-address=${MASTER_ADDRESS} \\
--allow-privileged=true \\
--service-cluster-ip-range=10.0.0.0/24 \\
--enable-admission-plugins=NamespaceLifecycle,LimitRanger,ServiceAccount,ResourceQuota,NodeRestriction \\
--authorization-mode=RBAC,Node \\
--kubelet-https=true \\
--enable-bootstrap-token-auth \\
--token-auth-file=/opt/kubernetes/cfg/token.csv \\
--service-node-port-range=30000-50000 \\
--tls-cert-file=/opt/kubernetes/ssl/apiserver.pem \\
--tls-private-key-file=/opt/kubernetes/ssl/apiserver-key.pem \\
--client-ca-file=/opt/kubernetes/ssl/ca.pem \\
--service-account-key-file=/opt/kubernetes/ssl/ca-key.pem \\
--etcd-cafile=/opt/etcd/ssl/ca.pem \\
--etcd-certfile=/opt/etcd/ssl/server.pem \\
--etcd-keyfile=/opt/etcd/ssl/server-key.pem"
EOF
#--logtostderr=true:輸出日志到標准錯誤控制台,不輸出到文件
#--v=4:指定輸出日志的級別,v=4為調試級別詳細輸出
#--etcd-servers:指定etcd服務器列表(格式://ip:port),逗號分隔
#--bind-address:指定 HTTPS 安全接口的監聽地址,默認值0.0.0.0
#--secure-port:指定 HTTPS 安全接口的監聽端口,默認值6443
#--advertise-address:通過該 ip 地址向集群其他節點公布 api server 的信息,必須能夠被其他節點訪問
#--allow-privileged=true:允許擁有系統特權的容器運行,默認值false
#--service-cluster-ip-range:指定 Service Cluster IP 地址段
#--enable-admission-plugins:kuberneres集群的准入控制機制,各控制模塊以插件的形式依次生效,集群時必須包含ServiceAccount,運行在認證(Authentication)、授權(Authorization)之后,Admission Control是權限認證鏈上的最后一環, 對請求API資源對象進行修改和校驗
#--authorization-mode:在安全端口使用RBAC,Node授權模式,未通過授權的請求拒絕,默認值AlwaysAllow。RBAC是用戶通過角色與權限進行關聯的模式;Node模式(節點授權)是一種特殊用途的授權模式,專門授權由kubelet發出的API請求,在進行認證時,先通過用戶名、用戶分組驗證是否是集群中的Node節點,只有是Node節點的請求才能使用Node模式授權
#--kubelet-https=true:kubelet通信使用https,默認值true
#--enable-bootstrap-token-auth:在apiserver上啟用Bootstrap Token 認證
#--token-auth-file=/opt/kubernetes/cfg/token.csv:指定Token認證文件路徑
#--service-node-port-range:指定 NodePort 的端口范圍,默認值30000-32767
#創建 kube-apiserver.service 服務管理文件
cat >/usr/lib/systemd/system/kube-apiserver.service <<EOF
[Unit]
Description=Kubernetes API Server
Documentation=https://github.com/kubernetes/kubernetes
[Service]
EnvironmentFile=-/opt/kubernetes/cfg/kube-apiserver
ExecStart=/opt/kubernetes/bin/kube-apiserver \$KUBE_APISERVER_OPTS
Restart=on-failure
[Install]
WantedBy=multi-user.target
EOF
systemctl daemon-reload
systemctl enable kube-apiserver
systemctl restart kube-apiserver
5.1.2 編寫scheduler.sh
[root@master01 k8s]# cat scheduler.sh
#!/bin/bash
#創建 kube-scheduler 啟動參數配置文件
MASTER_ADDRESS=$1
cat >/opt/kubernetes/cfg/kube-scheduler <<EOF
KUBE_SCHEDULER_OPTS="--logtostderr=true \\
--v=4 \\
--master=${MASTER_ADDRESS}:8080 \\
--leader-elect=true"
EOF
#--master:監聽 apiserver 的地址和8080端口
#--leader-elect=true:啟動 leader 選舉
#k8s中Controller-Manager和Scheduler的選主邏輯:k8s中的etcd是整個集群所有狀態信息的存儲,涉及數據的讀寫和多個etcd之間數據的同步,對數據的一致性要求嚴格,所以使用較復雜的 raft 算法來選擇用於提交數據的主節點。而 apiserver 作為集群入口,本身是無狀態的web服務器,多個 apiserver 服務之間直接負載請求並不需要做選主。Controller-Manager 和 Scheduler 作為任務類型的組件,比如 controller-manager 內置的 k8s 各種資源對象的控制器實時的 watch apiserver 獲取對象最新的變化事件做期望狀態和實際狀態調整,調度器watch未綁定節點的pod做節點選擇,顯然多個這些任務同時工作是完全沒有必要的,所以 controller-manager 和 scheduler 也是需要選主的,但是選主邏輯和 etcd 不一樣的,這里只需要保證從多個 controller-manager 和 scheduler 之間選出一個 leader 進入工作狀態即可,而無需考慮它們之間的數據一致和同步。
#創建 kube-scheduler.service 服務管理文件
cat >/usr/lib/systemd/system/kube-scheduler.service <<EOF
[Unit]
Description=Kubernetes Scheduler
Documentation=https://github.com/kubernetes/kubernetes
[Service]
EnvironmentFile=-/opt/kubernetes/cfg/kube-scheduler
ExecStart=/opt/kubernetes/bin/kube-scheduler \$KUBE_SCHEDULER_OPTS
Restart=on-failure
[Install]
WantedBy=multi-user.target
EOF
systemctl daemon-reload
systemctl enable kube-scheduler
systemctl restart kube-scheduler
5.1.3 編寫controller-manager.sh
[root@master01 k8s]# cat controller-manager.sh
#!/bin/bash
#創建 kube-controller-manager 啟動參數配置文件
MASTER_ADDRESS=$1
cat >/opt/kubernetes/cfg/kube-controller-manager <<EOF
KUBE_CONTROLLER_MANAGER_OPTS="--logtostderr=true \\
--v=4 \\
--master=${MASTER_ADDRESS}:8080 \\
--leader-elect=true \\
--address=127.0.0.1 \\
--service-cluster-ip-range=10.0.0.0/24 \\
--cluster-name=kubernetes \\
--cluster-signing-cert-file=/opt/kubernetes/ssl/ca.pem \\
--cluster-signing-key-file=/opt/kubernetes/ssl/ca-key.pem \\
--root-ca-file=/opt/kubernetes/ssl/ca.pem \\
--service-account-private-key-file=/opt/kubernetes/ssl/ca-key.pem \\
--experimental-cluster-signing-duration=87600h0m0s"
EOF
#--cluster-name=kubernetes:集群名稱,與CA證書里的CN匹配
#--cluster-signing-cert-file:指定簽名的CA機構根證書,用來簽名為 TLS BootStrapping 創建的證書和私鑰
#--root-ca-file:指定根CA證書文件路徑,用來對 kube-apiserver 證書進行校驗,指定該參數后,才會在 Pod 容器的 ServiceAccount 中放置該 CA 證書文件
#--experimental-cluster-signing-duration:設置為 TLS BootStrapping 簽署的證書有效時間為10年,默認為1年
#創建 kube-controller-manager.service 服務管理文件
cat >/usr/lib/systemd/system/kube-controller-manager.service <<EOF
[Unit]
Description=Kubernetes Controller Manager
Documentation=https://github.com/kubernetes/kubernetes
[Service]
EnvironmentFile=-/opt/kubernetes/cfg/kube-controller-manager
ExecStart=/opt/kubernetes/bin/kube-controller-manager \$KUBE_CONTROLLER_MANAGER_OPTS
Restart=on-failure
[Install]
WantedBy=multi-user.target
EOF
systemctl daemon-reload
systemctl enable kube-controller-manager
systemctl restart kube-controller-manager
5.1.4 編寫k8s-cert.sh
[root@master01 k8s]# cat k8s-cert.sh
#!/bin/bash
#配置證書生成策略,讓 CA 軟件知道頒發有什么功能的證書,生成用來簽發其他組件證書的根證書
cat > ca-config.json <<EOF
{
"signing": {
"default": {
"expiry": "87600h"
},
"profiles": {
"kubernetes": {
"expiry": "87600h",
"usages": [
"signing",
"key encipherment",
"server auth",
"client auth"
]
}
}
}
}
EOF
#生成CA證書和私鑰(根證書和私鑰)
cat > ca-csr.json <<EOF
{
"CN": "kubernetes",
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "CN",
"L": "Beijing",
"ST": "Beijing",
"O": "k8s",
"OU": "System"
}
]
}
EOF
cfssl gencert -initca ca-csr.json | cfssljson -bare ca -
#-----------------------
#生成 apiserver 的證書和私鑰(apiserver和其它k8s組件通信使用)
#hosts中將所有可能作為 apiserver 的 ip 添加進去,后面 keepalived 使用的 VIP 也要加入
cat > apiserver-csr.json <<EOF
{
"CN": "kubernetes",
"hosts": [
"10.0.0.1",
##service
"127.0.0.1",
##本地
"192.168.122.10",
##master01
"192.168.122.20",
##master02
"192.168.122.100",
##vip,后面 keepalived 使用
"192.168.122.13",
##load balancer01(master)
"192.168.122.14",
##load balancer02(backup)
"kubernetes",
"kubernetes.default",
"kubernetes.default.svc",
"kubernetes.default.svc.cluster",
"kubernetes.default.svc.cluster.local"
],
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "CN",
"L": "BeiJing",
"ST": "BeiJing",
"O": "k8s",
"OU": "System"
}
]
}
EOF
cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -profile=kubernetes apiserver-csr.json | cfssljson -bare apiserver
#-----------------------
#生成 kubectl 的證書和私鑰,具有admin權限
cat > admin-csr.json <<EOF
{
"CN": "admin",
"hosts": [],
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "CN",
"L": "BeiJing",
"ST": "BeiJing",
"O": "system:masters",
"OU": "System"
}
]
}
EOF
cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -profile=kubernetes admin-csr.json | cfssljson -bare admin
#-----------------------
#生成 kube-proxy 的證書和私鑰
cat > kube-proxy-csr.json <<EOF
{
"CN": "system:kube-proxy",
"hosts": [],
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "CN",
"L": "BeiJing",
"ST": "BeiJing",
"O": "k8s",
"OU": "System"
}
]
}
EOF
cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -profile=kubernetes kube-proxy-csr.json | cfssljson -bare kube-proxy
5.1.5 賦予以上腳本執行權限
[root@master01 k8s]# chmod +x *.sh
5.2 創建kubernetes工作目錄
[root@master01 k8s]# mkdir -p /opt/kubernetes/{cfg,bin,ssl}
5.3 生成CA證書、相關組件的證書和私鑰
[root@master01 k8s]# mkdir /opt/k8s/k8s-cert
[root@master01 k8s]# mv /opt/k8s/k8s-cert.sh /opt/k8s/k8s-cert
[root@master01 k8s]# cd !$
cd /opt/k8s/k8s-cert
[root@master01 k8s-cert]# ./k8s-cert.sh
#生成CA證書、相關組件的證書和私鑰
[root@master01 k8s-cert]# ls
admin.csr admin.pem apiserver-key.pem ca.csr ca.pem kube-proxy-csr.json
admin-csr.json apiserver.csr apiserver.pem ca-csr.json k8s-cert.sh kube-proxy-key.pem
admin-key.pem apiserver-csr.json ca-config.json ca-key.pem kube-proxy.csr kube-proxy.pem
controller-manager和kube-scheduler設置為只調用當前機器的apiserver,使用127.0.0.1:8080通信,因此不需要簽發證書
5.4 復制CA證書、apiserver相關證書和私鑰到kubernetes工作目錄的ssl子目錄中
[root@master01 k8s-cert]# ls *.pem
admin-key.pem admin.pem apiserver-key.pem apiserver.pem ca-key.pem ca.pem kube-proxy-key.pem kube-proxy.pem
[root@master01 k8s-cert]# cp ca*pem apiserver*pem /opt/kubernetes/ssl/
5.5 下載或上傳kubernetes安裝包到/opt/k8s目錄,並解壓
[root@master01 k8s-cert]# cd /opt/k8s/
[root@master01 k8s]# rz -E
#上傳k8s安裝包kubernetes-server-linux-amd64.tar.gz
rz waiting to receive.
[root@master01 k8s]# tar zxvf kubernetes-server-linux-amd64.tar.gz
5.6 復制master組件的關鍵命令文件到kubernetes工作目錄的bin子目錄中
[root@master01 k8s]# cd /opt/k8s/kubernetes/server/bin/
[root@master01 bin]# ls
apiextensions-apiserver kubeadm kube-controller-manager.docker_tag kube-proxy.docker_tag mounter
cloud-controller-manager kube-apiserver kube-controller-manager.tar kube-proxy.tar
cloud-controller-manager.docker_tag kube-apiserver.docker_tag kubectl kube-scheduler
cloud-controller-manager.tar kube-apiserver.tar kubelet kube-scheduler.docker_tag
hyperkube kube-controller-manager kube-proxy kube-scheduler.tar
[root@master01 bin]# cp kube-apiserver kubectl kube-controller-manager kube-scheduler /opt/kubernetes/bin/
[root@master01 bin]# ln -s /opt/kubernetes/bin/* /usr/local/bin/
5.7 創建bootstrap token認證文件
apiserver啟動時會調用,然后就相當於在集群內創建了一個這個用戶,接下來就可以用RBAC給他授權
[root@master01 bin]# cd /opt/k8s/
[root@master01 k8s]# vim token.sh
#!/bin/bash
#獲取隨機數前16個字節內容,以十六進制格式輸出,並刪除其中空格
BOOTSTRAP_TOKEN=$(head -c 16 /dev/urandom | od -An -t x | tr -d ' ')
#生成token.csv文件,按照Token序列號,用戶名,UID,用戶組的格式生成
cat > /opt/kubernetes/cfg/token.csv <<EOF
${BOOTSTRAP_TOKEN},kubelet-bootstrap,10001,"sysytem:kubelet-bootstrap"
EOF
[root@master01 k8s]# chmod +x token.sh
[root@master01 k8s]# ./token.sh
[root@master01 k8s]# cat /opt/kubernetes/cfg/token.csv
87fe12db8fc131d8e43561e3d82b9878,kubelet-bootstrap,10001,"sysytem:kubelet-bootstrap"
5.8 二進制文件、token、證書都准備好后,開啟apiserver服務
[root@master01 k8s]# cd /opt/k8s/
[root@master01 k8s]# ./apiserver.sh 192.168.122.10 https://192.168.122.10:2379,https://192.168.122.11:2379,https://192.168.122.12:2379
Created symlink from /etc/systemd/system/multi-user.target.wants/kube-apiserver.service to /usr/lib/systemd/system/kube-apiserver.service.
5.9 檢查
5.9.1 檢查進程是否啟動成功
[root@master01 k8s]# ps aux | grep kube-apiserver
root 3667 12.1 15.6 405152 318232 ? Ssl 15:08 0:06 /opt/kubernetes/bin/kube-apiserver --logtostderr=true --v=4 --etcd-servers=https://192.168.122.10:2379,https://192.168.122.11:2379,https://192.168.122.12:2379 --bind-address=192.168.122.10 --secure-port=6443 --advertise-address=192.168.122.10 --allow-privileged=true --service-cluster-ip-range=10.0.0.0/24 --enable-admission-plugins=NamespaceLifecycle,LimitRanger,ServiceAccount,ResourceQuota,NodeRestriction --authorization-mode=RBAC,Node --kubelet-https=true --enable-bootstrap-token-auth --token-auth-file=/opt/kubernetes/cfg/token.csv --service-node-port-range=30000-50000 --tls-cert-file=/opt/kubernetes/ssl/apiserver.pem --tls-private-key-file=/opt/kubernetes/ssl/apiserver-key.pem --client-ca-file=/opt/kubernetes/ssl/ca.pem --service-account-key-file=/opt/kubernetes/ssl/ca-key.pem --etcd-cafile=/opt/etcd/ssl/ca.pem --etcd-certfile=/opt/etcd/ssl/server.pem --etcd-keyfile=/opt/etcd/ssl/server-key.pem
root 3686 0.0 0.0 112676 984 pts/0 S+ 15:09 0:00 grep --color=auto kube-apiserver
k8s通過kube-apiserver這個進程提供服務,該進程運行在單個master節點上。默認有兩個端口6443和8080(新版本為58080)
5.9.2 檢查6443端口
安全端口6443用於接收HTTPS請求,用於基於Token文件或客戶端證書等認證
[root@master01 k8s]# netstat -natp | grep 6443
tcp 0 0 192.168.122.10:6443 0.0.0.0:* LISTEN 3667/kube-apiserver
tcp 0 0 192.168.122.10:6443 192.168.122.10:50550 ESTABLISHED 3667/kube-apiserver
tcp 0 0 192.168.122.10:50550 192.168.122.10:6443 ESTABLISHED 3667/kube-apiserver
5.9.3 檢查8080端口
本地端口8080用於接收HTTP請求,非認證或授權的HTTP請求通過該端口訪問API Server
[root@master01 k8s]# netstat -natp | grep 8080
tcp 0 0 127.0.0.1:8080 0.0.0.0:* LISTEN 3667/kube-apiserver
5.9.4 查看版本信息
必須保證apiserver啟動正常,不然無法查詢到server的版本信息
[root@master01 k8s]# kubectl version
Client Version: version.Info{Major:"1", Minor:"12", GitVersion:"v1.12.3", GitCommit:"435f92c719f279a3a67808c80521ea17d5715c66", GitTreeState:"clean", BuildDate:"2018-11-26T12:57:14Z", GoVersion:"go1.10.4", Compiler:"gc", Platform:"linux/amd64"}
Server Version: version.Info{Major:"1", Minor:"12", GitVersion:"v1.12.3", GitCommit:"435f92c719f279a3a67808c80521ea17d5715c66", GitTreeState:"clean", BuildDate:"2018-11-26T12:46:57Z", GoVersion:"go1.10.4", Compiler:"gc", Platform:"linux/amd64"}
5.10 啟動scheduler服務
[root@master01 k8s]# ./scheduler.sh 127.0.0.1
Created symlink from /etc/systemd/system/multi-user.target.wants/kube-scheduler.service to /usr/lib/systemd/system/kube-scheduler.service.
[root@master01 k8s]# ps aux | grep kube-schesuler
root 3942 0.0 0.0 112676 980 pts/0 R+ 15:22 0:00 grep --color=auto kube-schesuler
[root@master01 k8s]# ps aux | grep kube-scheduler
root 3920 0.4 1.0 45616 20704 ? Ssl 15:22 0:00 /opt/kubernetes/bin/kube-scheduler --logtostderr=true --v=4 --master=127.0.0.1:8080 --leader-elect=true
root 3944 0.0 0.0 112676 984 pts/0 S+ 15:23 0:00 grep --color=auto kube-scheduler
5.11 啟動controller-manager服務
[root@master01 k8s]# ./controller-manager.sh 127.0.0.1
Created symlink from /etc/systemd/system/multi-user.target.wants/kube-controller-manager.service to /usr/lib/systemd/system/kube-controller-manager.service.
[root@master01 k8s]# ps aux | grep controller-manager
root 4029 1.0 3.1 142844 64964 ? Ssl 15:24 0:01 /opt/kubernetes/bin/kube-controller-manager --logtostderr=true --v=4 --master=127.0.0.1:8080 --leader-elect=true --address=127.0.0.1 --service-cluster-ip-range=10.0.0.0/24 --cluster-name=kubernetes --cluster-signing-cert-file=/opt/kubernetes/ssl/ca.pem --cluster-signing-key-file=/opt/kubernetes/ssl/ca-key.pem --root-ca-file=/opt/kubernetes/ssl/ca.pem --service-account-private-key-file=/opt/kubernetes/ssl/ca-key.pem --experimental-cluster-signing-duration=87600h0m0s
root 4060 0.0 0.0 112676 980 pts/0 S+ 15:26 0:00 grep --color=auto controller-manager
5.12 查看master節點狀態
[root@master01 k8s]# kubectl get componentstatuses
NAME STATUS MESSAGE ERROR
controller-manager Healthy ok
scheduler Healthy ok
etcd-0 Healthy {"health":"true"}
etcd-2 Healthy {"health":"true"}
etcd-1 Healthy {"health":"true"}
或
[root@master01 k8s]# kubectl get cs
NAME STATUS MESSAGE ERROR
controller-manager Healthy ok
scheduler Healthy ok
etcd-1 Healthy {"health":"true"}
etcd-2 Healthy {"health":"true"}
etcd-0 Healthy {"health":"true"}
6. 部署Worker Node組件
6.1 把kubelet、kube-proxy拷貝到node節點(在master01節點操作)
[root@master01 k8s]# cd /opt/k8s/kubernetes/server/bin
[root@master01 bin]# scp kubelet kube-proxy root@192.168.122.11:/opt/kubernetes/bin/
kubelet 100% 168MB 141.0MB/s 00:01
kube-proxy 100% 48MB 100.0MB/s 00:00
[root@master01 bin]# scp kubelet kube-proxy root@192.168.122.12:/opt/kubernetes/bin/
kubelet 100% 168MB 148.9MB/s 00:01
kube-proxy 100% 48MB 139.9MB/s 00:00
6.2 編寫腳本(在node01節點操作)
6.2.1 proxy.sh
[root@node01 opt]# cat proxy.sh
#!/bin/bash
NODE_ADDRESS=$1
#創建 kube-proxy 啟動參數配置文件
cat >/opt/kubernetes/cfg/kube-proxy <<EOF
KUBE_PROXY_OPTS="--logtostderr=true \\
--v=4 \\
--hostname-override=${NODE_ADDRESS} \\
--cluster-cidr=172.17.0.0/16 \\
--proxy-mode=ipvs \\
--kubeconfig=/opt/kubernetes/cfg/kube-proxy.kubeconfig"
EOF
#--hostnameOverride: 參數值必須與 kubelet 的值一致,否則 kube-proxy 啟動后會找不到該 Node,從而不會創建任何 ipvs 規則
#--cluster-cidr:指定 Pod 網絡使用的聚合網段,Pod 使用的網段和 apiserver 中指定的 service 的 cluster ip 網段不是同一個網段。 kube-proxy 根據 --cluster-cidr 判斷集群內部和外部流量,指定 --cluster-cidr 選項后 kube-proxy 才會對訪問 Service IP 的請求做 SNAT,即來自非 Pod 網絡的流量被當成外部流量,訪問 Service 時需要做 SNAT。
#--proxy-mode:指定流量調度模式為 ipvs 模式
#--kubeconfig: 指定連接 apiserver 的 kubeconfig 文件
#----------------------
#創建 kube-proxy.service 服務管理文件
cat >/usr/lib/systemd/system/kube-proxy.service <<EOF
[Unit]
Description=Kubernetes Proxy
After=network.target
[Service]
EnvironmentFile=-/opt/kubernetes/cfg/kube-proxy
ExecStart=/opt/kubernetes/bin/kube-proxy \$KUBE_PROXY_OPTS
Restart=on-failure
[Install]
WantedBy=multi-user.target
EOF
systemctl daemon-reload
systemctl enable kube-proxy
systemctl restart kube-proxy
6.2.2 編寫kubelet.sh
[root@node01 opt]# cat kubelet.sh
#!/bin/bash
NODE_ADDRESS=$1
DNS_SERVER_IP=${2:-"10.0.0.2"}
#創建 kubelet 啟動參數配置文件
cat >/opt/kubernetes/cfg/kubelet <<EOF
KUBELET_OPTS="--logtostderr=true \\
--v=4 \\
--hostname-override=${NODE_ADDRESS} \\
--kubeconfig=/opt/kubernetes/cfg/kubelet.kubeconfig \\
--bootstrap-kubeconfig=/opt/kubernetes/cfg/bootstrap.kubeconfig \\
--config=/opt/kubernetes/cfg/kubelet.config \\
--cert-dir=/opt/kubernetes/ssl \\
--pod-infra-container-image=registry.cn-hangzhou.aliyuncs.com/google-containers/pause-amd64:3.0"
EOF
#--hostname-override:指定kubelet節點在集群中顯示的主機名或IP地址,默認使用主機hostname;kube-proxy和kubelet的此項參數設置必須完全一致
#--kubeconfig:指定kubelet.kubeconfig文件位置,用於如何連接到apiserver,里面含有kubelet證書,master授權完成后會在node節點上生成 kubelet.kubeconfig 文件
#--bootstrap-kubeconfig:指定連接 apiserver 的 bootstrap.kubeconfig 文件
#--config:指定kubelet配置文件的路徑,啟動kubelet時將從此文件加載其配置
#--cert-dir:指定master頒發的客戶端證書和密鑰保存位置
#--pod-infra-container-image:指定Pod基礎容器(Pause容器)的鏡像。Pod啟動的時候都會啟動一個這樣的容器,每個pod之間相互通信需要Pause的支持,啟動Pause需要Pause基礎鏡像
#----------------------
#創建kubelet配置文件(該文件實際上就是一個yml文件,語法非常嚴格,不能出現tab鍵,冒號后面必須要有空格,每行結尾也不能有空格)
cat >/opt/kubernetes/cfg/kubelet.config <<EOF
kind: KubeletConfiguration
apiVersion: kubelet.config.k8s.io/v1beta1
address: ${NODE_ADDRESS}
port: 10250
readOnlyPort: 10255
cgroupDriver: cgroupfs
clusterDNS:
- ${DNS_SERVER_IP}
clusterDomain: cluster.local.
failSwapOn: false
authentication:
anonymous:
enabled: true
EOF
#PS:當命令行參數與此配置文件(kubelet.config)有相同的值時,就會覆蓋配置文件中的該值。
#----------------------
#創建 kubelet.service 服務管理文件
cat >/usr/lib/systemd/system/kubelet.service <<EOF
[Unit]
Description=Kubernetes Kubelet
After=docker.service
Requires=docker.service
[Service]
EnvironmentFile=/opt/kubernetes/cfg/kubelet
ExecStart=/opt/kubernetes/bin/kubelet \$KUBELET_OPTS
Restart=on-failure
KillMode=process
[Install]
WantedBy=multi-user.target
EOF
systemctl daemon-reload
systemctl enable kubelet
systemctl restart kubelet
6.2.3 賦予上述腳本執行權限
[root@node01 opt]# chmod +x *.sh
6.3 在master01節點上操作
6.3.1 創建用於生成kubelet的配置文件的目錄
[root@master01 ~]# mkdir /opt/k8s/kubeconfig
6.3.2 編寫kubeconfig.sh
kubeconfig.sh文件包含集群參數(CA證書、API Server地址),客戶端參數(上面生成的證書和私鑰),集群context上下文參數(集群名稱、用戶名)。Kubenetes組件(如kubectl、kube-proxy)通過啟動時指定不同的kubeconfig文件可以切換到不同的集群,連接到apiserver。
[root@master01 ~]# cd !$
cd /opt/k8s/kubeconfig
[root@master01 kubeconfig]# cat kubeconfig.sh
#!/bin/bash
#example: kubeconfig 192.168.122.10 /opt/k8s/k8s-cert/
#創建bootstrap.kubeconfig文件
#該文件中內置了 token.csv 中用戶的 Token,以及 apiserver CA 證書;kubelet 首次啟動會加載此文件,使用 apiserver CA 證書建立與 apiserver 的 TLS 通訊,使用其中的用戶 Token 作為身份標識向 apiserver 發起 CSR 請求
BOOTSTRAP_TOKEN=$(awk -F ',' '{print $1}' /opt/kubernetes/cfg/token.csv)
APISERVER=$1
SSL_DIR=$2
export KUBE_APISERVER="https://$APISERVER:6443"
# 設置集群參數
kubectl config set-cluster kubernetes \
--certificate-authority=$SSL_DIR/ca.pem \
--embed-certs=true \
--server=${KUBE_APISERVER} \
--kubeconfig=bootstrap.kubeconfig
#--embed-certs=true:表示將ca.pem證書寫入到生成的bootstrap.kubeconfig文件中
# 設置客戶端認證參數,kubelet 使用 bootstrap token 認證
kubectl config set-credentials kubelet-bootstrap \
--token=${BOOTSTRAP_TOKEN} \
--kubeconfig=bootstrap.kubeconfig
# 設置上下文參數
kubectl config set-context default \
--cluster=kubernetes \
--user=kubelet-bootstrap \
--kubeconfig=bootstrap.kubeconfig
# 使用上下文參數生成 bootstrap.kubeconfig 文件
kubectl config use-context default --kubeconfig=bootstrap.kubeconfig
#----------------------
#創建kube-proxy.kubeconfig文件
# 設置集群參數
kubectl config set-cluster kubernetes \
--certificate-authority=$SSL_DIR/ca.pem \
--embed-certs=true \
--server=${KUBE_APISERVER} \
--kubeconfig=kube-proxy.kubeconfig
# 設置客戶端認證參數,kube-proxy 使用 TLS 證書認證
kubectl config set-credentials kube-proxy \
--client-certificate=$SSL_DIR/kube-proxy.pem \
--client-key=$SSL_DIR/kube-proxy-key.pem \
--embed-certs=true \
--kubeconfig=kube-proxy.kubeconfig
# 設置上下文參數
kubectl config set-context default \
--cluster=kubernetes \
--user=kube-proxy \
--kubeconfig=kube-proxy.kubeconfig
# 使用上下文參數生成 kube-proxy.kubeconfig 文件
kubectl config use-context default --kubeconfig=kube-proxy.kubeconfig
[root@master01 kubeconfig]# chmod +x kubeconfig.sh
6.3.3 生成kubelet的配置文件
[root@master01 kubeconfig]# cd /opt/k8s/kubeconfig
[root@master01 kubeconfig]# chmod +x kubeconfig.sh
[root@master01 kubeconfig]# ./kubeconfig.sh 192.168.122.10 /opt/k8s/k8s-cert/
[root@master01 kubeconfig]# ls
bootstrap.kubeconfig kubeconfig.sh kube-proxy.kubeconfig
6.3.4 把配置文件bootstrap.kubeconfig、kube-proxy.kubeconfig拷貝到node節點
[root@master01 kubeconfig]# cd /opt/k8s/kubeconfig
[root@master01 kubeconfig]# scp bootstrap.kubeconfig kube-proxy.kubeconfig root@192.168.122.11:/opt/kubernetes/cfg/
bootstrap.kubeconfig 100% 2168 4.4MB/s 00:00
kube-proxy.kubeconfig 100% 6274 7.7MB/s 00:00
[root@master01 kubeconfig]# scp bootstrap.kubeconfig kube-proxy.kubeconfig root@192.168.122.12:/opt/kubernetes/cfg/
bootstrap.kubeconfig 100% 2168 3.6MB/s 00:00
kube-proxy.kubeconfig 100% 6274 6.5MB/s 00:00
6.3.5 RBAC授權及相關說明
將預設用戶kubelet-bootstrap與內置的ClusterRole system:node-bootstrapper綁定到一起,使其能夠發起CSR請求
[root@master01 opt]# kubectl create clusterrolebinding kubelet-bootstrap --clusterrole=system:node-bootstrapper --user=kubelet-bootstrap
clusterrolebinding.rbac.authorization.k8s.io/kubelet-bootstrap created
kubelet采用TLS Bootstrapping機制,自動完成到kube-apiserver的注冊,在node節點量較大或者后期自動擴容時非常有用。
Master apiserver啟用TLS認證后,node節點kubelet組件想要加入集群,必須使用CA簽發的有效證書才能與apiserver通信,當node節點很多時,前述證書是一件很繁瑣的事情。因此Kubernetes引入了TLS bootstrapping機制來茲自動頒發客戶端證書,kubelet會以一個低權限用戶自動向apiserver申請證書,kubelet的證書由apiserver動態簽署。
kubelet首次啟動通過加載bootstrap.kubeconfig中的用戶Token和apiserver CA證書發起首次CSR請求,這個Token被預先內置在apiserver節點的token.csv中,其身份為kubelet=bootstrap用戶和system:kubelet=bootstrap用戶組;想要首次CSR請求能成功(即不會被apiserver 401拒絕),則需要先創建一個ClusterRoleBinding,將kubelet-bootstrap用戶和system:node-bootstrapper內置ClusterRole綁定(通過kubectl get clusterroles可查詢),使其能夠發起CSR認證請求。
TLS bootstrapping時的證書實際是由kube-controller-manager組件來簽署的,也就是說證書有效期是kube-controller-manager組件控制的;kube-controller-manager組件提供一個--experimental-cluster-signing-duration參數來設置簽署的證書有效時間:默認為8760h0m0s,將其改為87600h0m0s,即10年后再進行TLS bootstrapping簽署證書即可。
也就是說kubelet首次訪問API Server時,是使用token做認證,通過后,Controller Manager會為kubelet生成一個證書,以后的訪問都是用證書做認證了。
6.3.6 查看角色
[root@master01 kubeconfig]# kubectl get clusterroles | grep system:node-bootstrapper
system:node-bootstrapper 70m
6.3.7 查看已授權的角色
[root@master01 kubeconfig]# kubectl get clusterrolebinding
NAME AGE
cluster-admin 72m
kubelet-bootstrap 16m
system:aws-cloud-provider 72m
system:basic-user 72m
system:controller:attachdetach-controller 72m
system:controller:certificate-controller 72m
system:controller:clusterrole-aggregation-controller 72m
system:controller:cronjob-controller 72m
system:controller:daemon-set-controller 72m
system:controller:deployment-controller 72m
system:controller:disruption-controller 72m
system:controller:endpoint-controller 72m
system:controller:expand-controller 72m
system:controller:generic-garbage-collector 72m
system:controller:horizontal-pod-autoscaler 72m
system:controller:job-controller 72m
system:controller:namespace-controller 72m
system:controller:node-controller 72m
system:controller:persistent-volume-binder 72m
system:controller:pod-garbage-collector 72m
system:controller:pv-protection-controller 72m
system:controller:pvc-protection-controller 72m
system:controller:replicaset-controller 72m
system:controller:replication-controller 72m
system:controller:resourcequota-controller 72m
system:controller:route-controller 72m
system:controller:service-account-controller 72m
system:controller:service-controller 72m
system:controller:statefulset-controller 72m
system:controller:ttl-controller 72m
system:discovery 72m
system:kube-controller-manager 72m
system:kube-dns 72m
system:kube-scheduler 72m
system:node 72m
system:node-proxier 72m
system:volume-scheduler 72m
6.4 在node1節點上操作
6.4.1 使用kubelet.sh腳本啟動kubelet服務
[root@node01 opt]# cd /opt
[root@node01 opt]# chmod +x kubelet.sh
[root@node01 opt]# ./kubelet.sh 192.168.122.11
Created symlink from /etc/systemd/system/multi-user.target.wants/kubelet.service to /usr/lib/systemd/system/kubelet.service.
6.4.2 檢查kubelet服務啟動
[root@node01 opt]# ps aux | grep kubelet
root 83680 0.3 2.1 387336 42772 ? Ssl 17:33 0:00 /opt/kubernetes/bin/kubelet --logtostderr=true --v=4 --hostname-override= --kubeconfig=/opt/kubernetes/cfg/kubelet.kubeconfig --bootstrap-kubeconfig=/opt/kubernetes/cfg/bootstrap.kubeconfig --config=/opt/kubernetes/cfg/kubelet.config --cert-dir=/opt/kubernetes/ssl --pod-infra-container-image=registry.cn-hangzhou.aliyuncs.com/google-containers/pause-amd64:3.0
root 83746 0.0 0.0 112676 976 pts/2 R+ 17:34 0:00 grep --color=auto kubelet
6.4.3 查看當前ssl目錄
[root@node01 opt]# ls /opt/kubernetes/ssl/
kubelet-client.key.tmp kubelet.crt kubelet.key
此時還沒有生成證書,因為master還未對此申請做批准操作
6.4 在master01節點上操作
6.4.1 查看CSR請求
[root@master01 opt]# kubectl get csr
NAME AGE REQUESTOR CONDITION
node-csr-NJKSDx9hIMMweZuDIvyRABq4mguRltOyzm0_hsSXpRg 3m31s kubelet-bootstrap Pending
發現有來自於kubelet-bootstrap的申請,處於待辦狀態
6.4.2 通過CSR請求
[root@master01 opt]# kubectl certificate approve node-csr-NJKSDx9hIMMweZuDIvyRABq4mguRltOyzm0_hsSXpRg
certificatesigningrequest.certificates.k8s.io/node-csr-NJKSDx9hIMMweZuDIvyRABq4mguRltOyzm0_hsSXpRg approved
6.4.3 再次查看CSR請求狀態
[root@master01 opt]# kubectl get csr
NAME AGE REQUESTOR CONDITION
node-csr-NJKSDx9hIMMweZuDIvyRABq4mguRltOyzm0_hsSXpRg 6m21s kubelet-bootstrap Approved,Issued
Approved,Issued表示已授權CSR請求並簽發整數
6.4.4 查看集群節點狀態
[root@master01 opt]# kubectl get nodes
NAME STATUS ROLES AGE VERSION
node01 Ready <none> 2m30s v1.12.3
已成功接入node01節點
6.5 在node01節點上操作
6.5.1 已自動生成證書和kubelet.kubeconfig文件
[root@node01 opt]# ls /opt/kubernetes/cfg/kubelet.kubeconfig
/opt/kubernetes/cfg/kubelet.kubeconfig
[root@node01 opt]# ls /opt/kubernetes/ssl
kubelet-client-2021-10-28-17-39-42.pem kubelet-client-current.pem kubelet.crt kubelet.key
6.5.2 加載ip_vs模塊
[root@node01 opt]# for i in $(ls /usr/lib/modules/$(uname -r)/kernel/net/netfilter/ipvs|grep -o "^[^.]*");do echo $i; /sbin/modinfo -F filename $i > /dev/null 2>&1 && /sbin/modprobe $i;done
ip_vs_dh
ip_vs_ftp
ip_vs
ip_vs_lblc
ip_vs_lblcr
ip_vs_lc
ip_vs_nq
ip_vs_pe_sip
ip_vs_rr
ip_vs_sed
ip_vs_sh
ip_vs_wlc
ip_vs_wrr
6.5.3 使用proxy.sh腳本啟動proxy服務
[root@node01 opt]# cd /opt
[root@node01 opt]# chmod +x proxy.sh
[root@node01 opt]# ./proxy.sh 192.168.122.11
Created symlink from /etc/systemd/system/multi-user.target.wants/kube-proxy.service to /usr/lib/systemd/system/kube-proxy.service.
[root@node01 opt]# systemctl status kube-proxy.service
● kube-proxy.service - Kubernetes Proxy
Loaded: loaded (/usr/lib/systemd/system/kube-proxy.service; enabled; vendor preset: disabled)
Active: active (running) since 四 2021-10-28 19:09:15 CST; 35s ago
......
6.6 node02節點部署
6.6.1 方法一
6.6.1.1 在node01節點操作
將kubelet.sh、proxy.sh文件拷貝到node02節點
[root@node01 opt]# cd /opt/
[root@node01 opt]# scp kubelet.sh proxy.sh root@192.168.122.12:`pwd`
6.6.1.2 在node02節點上操作
使用kubelet.sh腳本啟動kubelet服務
[root@node02 opt]# cd /opt
[root@node02 opt]# chmod +x kubelet.sh
[root@node02 opt]# ./kubelet.sh 192.168.122.12
Created symlink from /etc/systemd/system/multi-user.target.wants/kubelet.service to /usr/lib/systemd/system/kubelet.service.
6.6.1.3 在master01節點上操作
查看CSR請求
[root@master01 opt]# kubectl get csr
NAME AGE REQUESTOR CONDITION
node-csr--2F7RCWB90yyxWKIgazmTQvWCq_AN7Au56xOlOAS_-Y 57s kubelet-bootstrap Pending
node-csr-NJKSDx9hIMMweZuDIvyRABq4mguRltOyzm0_hsSXpRg 101m kubelet-bootstrap Approved,Issued
通過CSR請求
[root@master01 opt]# kubectl certificate approve node-csr--2F7RCWB90yyxWKIgazmTQvWCq_AN7Au56xOlOAS_-Y
certificatesigningrequest.certificates.k8s.io/node-csr--2F7RCWB90yyxWKIgazmTQvWCq_AN7Au56xOlOAS_-Y approved
再次查看CSR請求
[root@master01 opt]# kubectl get csr
NAME AGE REQUESTOR CONDITION
node-csr--2F7RCWB90yyxWKIgazmTQvWCq_AN7Au56xOlOAS_-Y 2m4s kubelet-bootstrap Approved,Issued
node-csr-NJKSDx9hIMMweZuDIvyRABq4mguRltOyzm0_hsSXpRg 103m kubelet-bootstrap Approved,Issued
查看集群中的節點狀態
[root@master01 opt]# kubectl get nodes
NAME STATUS ROLES AGE VERSION
192.168.122.12 Ready <none> 55s v1.12.3
node01 Ready <none> 98m v1.12.3
6.6.1.4 node02操作
加載ipvs模塊
[root@node02 opt]# for i in $(ls /usr/lib/modules/$(uname -r)/kernel/net/netfilter/ipvs|grep -o "^[^.]*");do echo $i; /sbin/modinfo -F filename $i > /dev/null 2>&1 && /sbin/modprobe $i;done
ip_vs_dh
ip_vs_ftp
ip_vs
ip_vs_lblc
ip_vs_lblcr
ip_vs_lc
ip_vs_nq
ip_vs_pe_sip
ip_vs_rr
ip_vs_sed
ip_vs_sh
ip_vs_wlc
ip_vs_wrr
使用proxy.sh腳本啟動proxy服務
[root@node02 opt]# cd /opt
[root@node02 opt]# chmod +x proxy.sh
[root@node02 opt]# ./proxy.sh 192.168.122.12
Created symlink from /etc/systemd/system/multi-user.target.wants/kube-proxy.service to /usr/lib/systemd/system/kube-proxy.service.
查看服務狀態
[root@node02 opt]# systemctl status kube-proxy.service
● kube-proxy.service - Kubernetes Proxy
Loaded: loaded (/usr/lib/systemd/system/kube-proxy.service; enabled; vendor preset: disabled)
Active: active (running) since 四 2021-10-28 19:20:46 CST; 37s ago
......
6.6.2 方法二
6.6.2.1 在node01節點操作
把現成的/opt/kubernetes目錄和Kubelet、kube-proxy的service服務管理文件復制到其他節點
scp -r /opt/kubernetes/ root:192.168.122.12:/opt/
scp /usr/lib/systemd/system/{kubelet,kube-proxy}.service root@192.168.122.12:/usr/lib/systemd/system/
6.6.2.2 在node02節點操作
- 首先刪除復制過來的證書,node02可自行申請證書
cd /opt/kubernetes/ssl/
em -rf *
-
修改配置文件kubelet、kubelet.config、kube-proxy的相關IP地址配置為當前節點的IP地址
-
加載ipvs模塊
modeprobe ip_vs
- 啟動kubelet和kube-proxy服務並設置開機自啟
systemctl enable --now kubelet.service
systemctl enable --now kube-proxy.service
6.6.2.3 在master01操作
查看CSR申請
kubectl get csr
通過CSR申請
kubectl certificate approve [node-csr-......]
7. K8S單節點測試
master01
[root@master01 opt]# kubectl create deployment nginx-test --image=nginx:1.14
deployment.apps/nginx-test created
[root@master01 opt]# kubectl get pod
NAME READY STATUS RESTARTS AGE
nginx-test-7dc4f9dcc9-vs2p6 0/1 ContainerCreating 0 5s
#等待鏡像拉取
[root@master01 opt]# kubectl get pod
NAME READY STATUS RESTARTS AGE
nginx-test-7dc4f9dcc9-vs2p6 1/1 Running 0 45s
#容器啟動成功
查看pod詳情
[root@master01 opt]# kubectl describe pod nginx-test-7dc4f9dcc9-vs2p6
Name: nginx-test-7dc4f9dcc9-vs2p6
Namespace: default
Priority: 0
PriorityClassName: <none>
Node: node01/192.168.122.11
Start Time: Thu, 28 Oct 2021 19:43:55 +0800
Labels: app=nginx-test
pod-template-hash=7dc4f9dcc9
Annotations: <none>
Status: Running
IP: 172.17.54.3
Controlled By: ReplicaSet/nginx-test-7dc4f9dcc9
Containers:
nginx:
Container ID: docker://7f4a2b1dcf087bb2bc3a557b51a28ab34fb46286f4f34ac1017c30f9501e2462
Image: nginx:1.14
Image ID: docker-pullable://nginx@sha256:f7988fb6c02e0ce69257d9bd9cf37ae20a60f1df7563c3a2a6abe24160306b8d
Port: <none>
Host Port: <none>
State: Running
Started: Thu, 28 Oct 2021 19:44:24 +0800
Ready: True
Restart Count: 0
Environment: <none>
Mounts:
/var/run/secrets/kubernetes.io/serviceaccount from default-token-r4pck (ro)
Conditions:
Type Status
Initialized True
Ready True
ContainersReady True
PodScheduled True
Volumes:
default-token-r4pck:
Type: Secret (a volume populated by a Secret)
SecretName: default-token-r4pck
Optional: false
QoS Class: BestEffort
Node-Selectors: <none>
Tolerations: node.kubernetes.io/not-ready:NoExecute for 300s
node.kubernetes.io/unreachable:NoExecute for 300s
Events:
Type Reason Age From Message
---- ------ ---- ---- -------
Normal Scheduled 2m26s default-scheduler Successfully assigned default/nginx-test-7dc4f9dcc9-vs2p6 to node01
Normal Pulling 2m20s kubelet, node01 pulling image "nginx:1.14"
Normal Pulled 117s kubelet, node01 Successfully pulled image "nginx:1.14"
Normal Created 117s kubelet, node01 Created container
Normal Started 117s kubelet, node01 Started container
查看pod額外信息(包括IP)
[root@master01 opt]# kubectl get pod -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE
nginx-test-7dc4f9dcc9-vs2p6 1/1 Running 0 4m3s 172.17.54.3 node01 <none>
使用任意node節點訪問pod測試
[root@node01 opt]# curl 172.17.54.3
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
<style>
body {
width: 35em;
margin: 0 auto;
font-family: Tahoma, Verdana, Arial, sans-serif;
}
</style>
</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>
<p>For online documentation and support please refer to
<a href="http://nginx.org/">nginx.org</a>.<br/>
Commercial support is available at
<a href="http://nginx.com/">nginx.com</a>.</p>
<p><em>Thank you for using nginx.</em></p>
</body>
</html>
三、K8S多(Master)節點二進制部署(在以上部署完成的情況下)
1. 環境准備
1.1 服務器配置
服務器 | 主機名 | IP地址 | 主要組件/說明 |
---|---|---|---|
master01節點+etcd01節點 | master01 | 192.168.122.10 | kube-apiserver kube-controller-manager kube-schedular etcd |
master02節點 | master02 | 192.168.122.20 | kube-apiserver kube-controller-manager kube-schedular |
node01節點+etcd02節點 | node01 | 192.168.122.11 | kubelet kube-proxy docker flannel |
node02節點+etcd03節點 | node02 | 192.168.122.12 | kubelet kube-proxy docker flannel |
nginx01節點 | nginx01 | 192.168.122.13 | keepalived負載均衡(主) |
nginx02節點 | nginx02 | 192.168.122.14 | keepalived負載均衡(備) |
1.2 master02環境准備
[root@localhost ~]# hostnamectl set-hostname master02
[root@localhost ~]# su
[root@master02 ~]# cat >> /etc/hosts << EOF
> 192.168.122.10 master01
> 192.168.122.20 master02
> 192.168.122.11 node01
> 192.168.122.12 node02
> 192.168.122.13 nginx01
> 192.168.122.14 nginx02
> EOF
[root@master02 ~]# systemctl disable --now firewalld
Removed symlink /etc/systemd/system/multi-user.target.wants/firewalld.service.
Removed symlink /etc/systemd/system/dbus-org.fedoraproject.FirewallD1.service.
[root@master02 ~]# setenforce 0
[root@master02 ~]# sed -i 's/enforcing/disabled/' /etc/selinux/config
[root@master02 ~]# swapoff -a
[root@master02 ~]# sed -ri 's/.*swap.*/#&/' /etc/fstab
[root@master02 ~]# cat > /etc/sysctl.d/k8s.conf << EOF
> net.bridge.bridge-nf-call-ip6tables = 1
> net.bridge.bridge-nf-call-iptables = 1
> EOF
[root@master02 ~]# sysctl --system
* Applying /usr/lib/sysctl.d/00-system.conf ...
* Applying /usr/lib/sysctl.d/10-default-yama-scope.conf ...
kernel.yama.ptrace_scope = 0
* Applying /usr/lib/sysctl.d/50-default.conf ...
kernel.sysrq = 16
kernel.core_uses_pid = 1
net.ipv4.conf.default.rp_filter = 1
net.ipv4.conf.all.rp_filter = 1
net.ipv4.conf.default.accept_source_route = 0
net.ipv4.conf.all.accept_source_route = 0
net.ipv4.conf.default.promote_secondaries = 1
net.ipv4.conf.all.promote_secondaries = 1
fs.protected_hardlinks = 1
fs.protected_symlinks = 1
* Applying /usr/lib/sysctl.d/60-libvirtd.conf ...
fs.aio-max-nr = 1048576
* Applying /etc/sysctl.d/99-sysctl.conf ...
* Applying /etc/sysctl.d/k8s.conf ...
* Applying /etc/sysctl.conf ...
[root@master02 ~]# yum install -y ntpdate
[root@master02 ~]# ntpdate time.windows.com
29 Oct 15:00:27 ntpdate[38648]: adjust time server 52.231.114.183 offset -0.002620 sec
1.2 nginx主機(以nginx01為例)
[root@localhost ~]# hostnamectl set-hostname nginx01
[root@localhost ~]# su
[root@nginx01 ~]# systemctl disable --now firewalld
[root@nginx01 ~]# setenforce 0
[root@nginx01 ~]# sed -i 's/enforcing/disabled/' /etc/selinux/config
[root@nginx01 ~]# cat >> /etc/hosts << EOF
> 192.168.122.10 master01
> 192.168.122.20 master02
> 192.168.122.11 node01
> 192.168.122.12 node02
> 192.168.122.13 nginx01
> 192.168.122.14 nginx02
> EOF
1.3 其他主機
cat >> /etc/hosts << EOF
192.168.122.10 master01
192.168.122.20 master02
192.168.122.11 node01
192.168.122.12 node02
192.168.122.13 nginx01
192.168.122.14 nginx02
EOF
2. Master02部署
2.1 拷貝文件
從master01節點上拷貝證書文件、各master組件的配置文件和服務管理文件到master02節點
master01
[root@master01 ~]# scp -r /opt/etcd/ root@192.168.122.20:/opt/
root@192.168.122.20's password:
etcd 100% 516 134.7KB/s 00:00
etcd 100% 18MB 80.8MB/s 00:00
etcdctl 100% 15MB 109.3MB/s 00:00
ca-key.pem 100% 1679 346.6KB/s 00:00
ca.pem 100% 1257 577.1KB/s 00:00
server-key.pem 100% 1675 3.2MB/s 00:00
server.pem 100% 1334 582.3KB/s 00:00
[root@master01 ~]# scp -r /opt/kubernetes/ root@192.168.122.20:/opt/
root@192.168.122.20's password:
token.csv 100% 85 94.0KB/s 00:00
kube-apiserver 100% 938 920.3KB/s 00:00
kube-scheduler 100% 97 183.2KB/s 00:00
kube-controller-manager 100% 480 1.1MB/s 00:00
kube-apiserver 100% 184MB 121.3MB/s 00:01
kubectl 100% 55MB 125.3MB/s 00:00
kube-controller-manager 100% 155MB 140.3MB/s 00:01
kube-scheduler 100% 55MB 126.6MB/s 00:00
ca-key.pem 100% 1675 2.2MB/s 00:00
ca.pem 100% 1359 1.5MB/s 00:00
apiserver-key.pem 100% 1679 860.5KB/s 00:00
apiserver.pem 100% 1643 1.7MB/s 00:00
[root@master01 ~]# cd /usr/lib/systemd/system
[root@master01 system]# scp kube-apiserver.service kube-controller-manager.service kube-scheduler.service root@192.168.122.20:`pwd`
root@192.168.122.20's password:
kube-apiserver.service 100% 282 297.5KB/s 00:00
kube-controller-manager.service 100% 317 576.7KB/s 00:00
kube-scheduler.service 100% 281 582.3KB/s 00:00
2.2 修改配置文件kube-apiserver中的IP
master02
[root@master02 ~]# vim /opt/kubernetes/cfg/kube-apiserver
KUBE_APISERVER_OPTS="--logtostderr=true \
--v=4 \
--etcd-servers=https://192.168.122.10:2379,https://192.168.122.11:2379,https://192.168.122.12:2379 \
##監聽地址修改為master02主機IP
--bind-address=192.168.122.20 \
--secure-port=6443 \
##廣告地址修改為master02主機IP
--advertise-address=192.168.122.20 \
--allow-privileged=true \
--service-cluster-ip-range=10.0.0.0/24 \
--enable-admission-plugins=NamespaceLifecycle,LimitRanger,ServiceAccount,ResourceQuota,NodeRestriction \
--authorization-mode=RBAC,Node \
--kubelet-https=true \
--enable-bootstrap-token-auth \
--token-auth-file=/opt/kubernetes/cfg/token.csv \
--service-node-port-range=30000-50000 \
--tls-cert-file=/opt/kubernetes/ssl/apiserver.pem \
--tls-private-key-file=/opt/kubernetes/ssl/apiserver-key.pem \
--client-ca-file=/opt/kubernetes/ssl/ca.pem \
--service-account-key-file=/opt/kubernetes/ssl/ca-key.pem \
--etcd-cafile=/opt/etcd/ssl/ca.pem \
--etcd-certfile=/opt/etcd/ssl/server.pem \
--etcd-keyfile=/opt/etcd/ssl/server-key.pem"
2.3 啟動各服務並設置開機自啟
2.3.1 啟動
[root@master02 ~]# systemctl enable --now kube-apiserver.service
Created symlink from /etc/systemd/system/multi-user.target.wants/kube-apiserver.service to /usr/lib/systemd/system/kube-apiserver.service.
[root@master02 ~]# systemctl enable --now kube-controller-manager.service
Created symlink from /etc/systemd/system/multi-user.target.wants/kube-controller-manager.service to /usr/lib/systemd/system/kube-controller-manager.service.
[root@master02 ~]# systemctl enable --now kube-scheduler.service
Created symlink from /etc/systemd/system/multi-user.target.wants/kube-scheduler.service to /usr/lib/systemd/system/kube-scheduler.service.
2.3.2 查看狀態
[root@master02 ~]# systemctl status kube-apiserver.service
● kube-apiserver.service - Kubernetes API Server
Loaded: loaded (/usr/lib/systemd/system/kube-apiserver.service; enabled; vendor preset: disabled)
Active: active (running) since 五 2021-10-29 15:27:32 CST; 1min 22s ago
......
[root@master02 ~]# systemctl status kube-controller-manager.service
● kube-controller-manager.service - Kubernetes Controller Manager
Loaded: loaded (/usr/lib/systemd/system/kube-controller-manager.service; enabled; vendor preset: disabled)
Active: active (running) since 五 2021-10-29 15:27:39 CST; 1min 43s ago
......
[root@master02 ~]# systemctl status kube-scheduler.service
● kube-scheduler.service - Kubernetes Scheduler
Loaded: loaded (/usr/lib/systemd/system/kube-scheduler.service; enabled; vendor preset: disabled)
Active: active (running) since 五 2021-10-29 15:27:48 CST; 1min 53s ago
......
2.4 查看node節點狀態
master02
[root@master02 ~]# ln -s /opt/kubernetes/bin/* /usr/local/bin/
[root@master02 ~]# kubectl get nodes
NAME STATUS ROLES AGE VERSION
192.168.122.12 Ready <none> 20h v1.12.3
node01 Ready <none> 21h v1.12.3
[root@master02 ~]# kubectl get nodes -o wide
NAME STATUS ROLES AGE VERSION INTERNAL-IP EXTERNAL-IP OS-IMAGE KERNEL-VERSION CONTAINER-RUNTIME
192.168.122.12 Ready <none> 20h v1.12.3 192.168.122.12 <none> CentOS Linux 7 (Core) 3.10.0-693.el7.x86_64 docker://20.10.10
node01 Ready <none> 21h v1.12.3 192.168.122.11 <none> CentOS Linux 7 (Core) 3.10.0-693.el7.x86_64 docker://20.10.10
-o wide:額外輸出信息,對於Pod,將輸出Pod所在的Node名
此時在master02節點查看到的node節點狀態僅是從etcd查詢到的信息,而此時node節點實際上並未與master02節點建立通信連接,因此需要使用一個VIP把node節點與master節點關聯起來
3. 負載均衡部署(nginx主機,以nginx01為例)
配置load balancer集群雙機熱備負載均衡(nginx實現負載均衡,keepalived實現雙機熱備)
3.1 下載nginx
配置nginx的官方在線yum源,配置本地nginx的yum源
nginx主機(以nginx01為例)
[root@nginx01 ~]# cat > /etc/yum.repos.d/nginx.repo << 'EOF'
> [nginx]
> name=nginx repo
> baseurl=http://nginx.org/packages/centos/7/$basearch/
> gpgcheck=0
> EOF
[root@nginx01 ~]# yum install -y nginx
3.2 修改nginx配置文件
配置四層反向代理負載均衡,指定k8s集群2台master的節點ip和6443
nginx主機(以nginx01為例)
[root@nginx01 ~]# vim /etc/nginx/nginx.conf
......
events {
worker_connections 1024;
}
stream {
log_format main '$remote_addr $upstream_addr - [$time_local] $status $upstream_bytes_sent';
access_log /var/log/nginx/k8s-access.log main;
upstream k8s-apiservers {
server 192.168.122.10:6443;
server 192.168.122.20:6443;
}
server {
listen 6443;
proxy_pass k8s-apiservers;
}
}
http {
......
3.3 啟動nginx
3.3.1 檢查配置文件語法
[root@nginx01 ~]# nginx -t
nginx: the configuration file /etc/nginx/nginx.conf syntax is ok
nginx: configuration file /etc/nginx/nginx.conf test is successful
3.3.2 啟動nginx
[root@nginx01 ~]# systemctl enable --now nginx
Created symlink from /etc/systemd/system/multi-user.target.wants/nginx.service to /usr/lib/systemd/system/nginx.service.
3.3.3 查看狀態
[root@nginx01 ~]# systemctl status nginx
● nginx.service - nginx - high performance web server
Loaded: loaded (/usr/lib/systemd/system/nginx.service; enabled; vendor preset: disabled)
Active: active (running) since 五 2021-10-29 16:44:40 CST; 1min 19s ago
......
[root@localhost ~]# netstat -natp | grep nginx
tcp 0 0 0.0.0.0:6443 0.0.0.0:* LISTEN 5009/nginx: master
tcp 0 0 0.0.0.0:80 0.0.0.0:* LISTEN 5009/nginx: master
4. 部署keepalived服務(nginx主機,以nginx01為例)
4.1 下載keepalived
[root@nginx01 ~]# yum install -y keepalived
4.2 修改keepalived配置文件
node1
[root@nginx01 ~]# vim /etc/keepalived/keepalived.conf
##10行,修改
smtp_server 127.0.0.1
##12行,修改,nginx01節點的為NGINX_MASTER,nginx02節點的為NGINX_BACKUP
router_id LVS_MASTER
##13-16行,刪除
}
##14行,插入一個周期性執行的腳本
vrrp_script check_nginx {
##15行,指定檢查nginx存活的腳本路徑
script "/etc/nginx/check_nginx.sh"
}
##18行,修改,nginx01節點的為MASTER,nginx02節點的為BACKUP
state MASTER
##19行,修改,指定網卡名稱ens33
interface ens33
##20行,指定vrid,兩個節點要保持一致
virtual_router_id 51
##21行,nginx01節點的為100,nginx02節點的為90
priority 100
##27行,修改,指定VIP
virtual_ipaddress {
192.168.122.100/24
}
##30行,添加,指定vrrp_script配置的腳本
track_script {
check_nginx
}
}
##刪除剩余無用配置
node2
[root@localhost ~]# cat /etc/keepalived/keepalived.conf
! Configuration File for keepalived
global_defs {
notification_email {
acassen@firewall.loc
failover@firewall.loc
sysadmin@firewall.loc
}
notification_email_from Alexandre.Cassen@firewall.loc
smtp_server 127.0.0.1
smtp_connect_timeout 30
router_id LVS_BACKUP
}
vrrp_script check_nginx {
script "/etc/nginx/check_nginx.sh"
}
vrrp_instance VI_1 {
state BACKUP
interface ens33
virtual_router_id 51
priority 90
advert_int 1
authentication {
auth_type PASS
auth_pass 1111
}
virtual_ipaddress {
192.168.122.100/24
}
track_script {
check_nginx
}
}
4.3 創建nginx狀態檢查腳本
[root@nginx01 ~]# vim /etc/nginx/check_nginx.sh
#!/bin/bash
#egrep -cv "grep|$$"用於過濾掉包含grep或者$$表示的當前shell進程ID
count=$(ps -ef | grep nginx | egrep -cv "grep|$$")
if [ "$count" -eq 0 ];then
systemctl stop keepalived
fi
[root@nginx01 ~]# chmod +x /etc/nginx/check_nginx.sh
[root@nginx01 ~]# scp /etc/nginx/check_nginx.sh root@192.168.122.14:/etc/nginx/check_nginx.sh
4.4 啟動keepalived服務
一定要先啟動了nginx服務,再啟動keepalived服務
[root@nginx01 ~]# systemctl enable --now keepalived.service
Created symlink from /etc/systemd/system/multi-user.target.wants/keepalived.service to /usr/lib/systemd/system/keepalived.service.
[root@nginx01 ~]# systemctl status keepalived.service
● keepalived.service - LVS and VRRP High Availability Monitor
Loaded: loaded (/usr/lib/systemd/system/keepalived.service; disabled; vendor preset: disabled)
Active: active (running) since 五 2021-10-29 17:15:19 CST; 11s ago
......
4.5 nginx01中查看VIP
[root@nginx01 ~]# ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN qlen 1
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
valid_lft forever preferred_lft forever
inet6 ::1/128 scope host
valid_lft forever preferred_lft forever
2: ens33: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000
link/ether 00:0c:29:0a:d8:e6 brd ff:ff:ff:ff:ff:ff
inet 192.168.122.13/24 brd 192.168.122.255 scope global ens33
valid_lft forever preferred_lft forever
inet 192.168.122.100/24 scope global secondary ens33
##生成VIP
valid_lft forever preferred_lft forever
inet6 fe80::3e99:f5f7:fa46:9ea8/64 scope link
valid_lft forever preferred_lft forever
4.6 修改node節點對接IP(node節點,以node1為例)
4.6.1 修改node節點配置文件
修改node節點上的bootstrap.kubeconfig、kubelet.kubeconfig和kube-proxy.kubeconfig配置文件中的server為VIP
[root@node01 ~]# cd /opt/kubernetes/cfg/
[root@node01 cfg]# vim bootstrap.kubeconfig
##5行,修改IP為VIP
server: https://192.168.122.100:6443
[root@node01 cfg]# vim kubelet.kubeconfig
##5行,修改IP為VIP
server: https://192.168.122.100:6443
[root@node01 cfg]# vim kube-proxy.kubeconfig
##5行,修改IP為VIP
server: https://192.168.122.100:6443
4.6.2 重啟kubelet和kube-proxy服務
[root@node01 cfg]# systemctl restart kubelet.service
[root@node01 cfg]# systemctl restart kube-proxy.service
4.7 在nginx01查看nginx和node、master節點的連接狀態
[root@nginx01 ~]# netstat -natp | grep nginx
tcp 0 0 0.0.0.0:6443 0.0.0.0:* LISTEN 5056/nginx: master
tcp 0 0 0.0.0.0:80 0.0.0.0:* LISTEN 5056/nginx: master
tcp 0 0 192.168.122.100:6443 192.168.122.11:40450 ESTABLISHED 5058/nginx: worker
tcp 0 0 192.168.122.13:36176 192.168.122.10:6443 ESTABLISHED 5057/nginx: worker
tcp 0 0 192.168.122.100:6443 192.168.122.12:57280 ESTABLISHED 5057/nginx: worker
tcp 0 0 192.168.122.100:6443 192.168.122.12:57266 ESTABLISHED 5057/nginx: worker
tcp 0 0 192.168.122.13:36184 192.168.122.10:6443 ESTABLISHED 5057/nginx: worker
tcp 0 0 192.168.122.100:6443 192.168.122.11:40462 ESTABLISHED 5057/nginx: worker
tcp 0 0 192.168.122.13:36171 192.168.122.10:6443 ESTABLISHED 5058/nginx: worker
tcp 0 0 192.168.122.13:40138 192.168.122.20:6443 ESTABLISHED 5057/nginx: worker
本地nginx監聽端口為6443和80,6443負責負載均衡代理,80負責web展示服務。
VIP的6443端口分別與nginx01/nginx02相連接。
master01/master02的6443端口分別與nginx01相連接。
自此,多節點負載均衡搭建完畢。
5. 驗證--使用master02創建pod
5.1 查看pod、node列表
[root@master02 ~]# kubectl get node
NAME STATUS ROLES AGE VERSION
192.168.122.12 Ready <none> 3d1h v1.12.3
node01 Ready <none> 3d3h v1.12.3
[root@master02 ~]# kubectl get pod
NAME READY STATUS RESTARTS AGE
nginx-test-7dc4f9dcc9-vs2p6 1/1 Running 0 3d1h
5.2 創建pod
[root@master02 ~]# kubectl create deploy nginx-master02-test --image=nginx
deployment.apps/nginx-master02-test created
[root@master02 ~]# kubectl get pod
NAME READY STATUS RESTARTS AGE
nginx-master02-test-79fc886b76-rsxxt 0/1 ContainerCreating 0 13s
nginx-test-7dc4f9dcc9-vs2p6 1/1 Running 0 3d1h
##等待容器創建,可通過"kubectl describe pod nginx-master02-test"查看創建過程
[root@master02 ~]# kubectl get pod
NAME READY STATUS RESTARTS AGE
nginx-master02-test-79fc886b76-rsxxt 1/1 Running 0 77s
nginx-test-7dc4f9dcc9-vs2p6 1/1 Running 0 3d1h
5.3 查看使用node
[root@master02 ~]# kubectl get pod -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE
nginx-master02-test-79fc886b76-rsxxt 1/1 Running 0 2m34s 172.17.97.3 192.168.122.12 <none>
nginx-test-7dc4f9dcc9-vs2p6 1/1 Running 0 3d1h 172.17.54.3 node01 <none>
成功使用master02創建pod,並且通過nginx完成負載均衡
6. 刪除Pod
6.1 查看k8s全部資源
[root@master02 ~]# kubectl get all
NAME READY STATUS RESTARTS AGE
pod/nginx-master02-test-79fc886b76-rsxxt 1/1 Running 0 7m3s
pod/nginx-test-7dc4f9dcc9-vs2p6 1/1 Running 0 3d1h
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/kubernetes ClusterIP 10.0.0.1 <none> 443/TCP 3d6h
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
deployment.apps/nginx-master02-test 1 1 1 1 7m3s
deployment.apps/nginx-test 1 1 1 1 3d1h
NAME DESIRED CURRENT READY AGE
replicaset.apps/nginx-master02-test-79fc886b76 1 1 1 7m3s
replicaset.apps/nginx-test-7dc4f9dcc9 1 1 1 3d1h
6.2 delete刪除pod
[root@master02 ~]# kubectl delete pod nginx-master02-test-79fc886b76-rsxxt
pod "nginx-master02-test-79fc886b76-rsxxt" deleted
[root@master02 ~]# kubectl get pod
NAME READY STATUS RESTARTS AGE
nginx-master02-test-79fc886b76-s2scw 1/1 Running 0 23s
nginx-test-7dc4f9dcc9-vs2p6 1/1 Running 0 3d1h
由於deployment創建的replicaset管理着pod的數量,該pod被刪除后,deployment會再次拉取一個新的pod,實現了pod的自愈功能,因此想要徹底刪除pod,需要刪除該pod所屬deployment,可通過“kubectl get deploy”獲取deployment列表
6.3 delete刪除deployment
[root@master02 ~]# kubectl get deploy
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
nginx-master02-test 1 1 1 1 19m
nginx-test 1 1 1 1 3d1h
[root@master02 ~]# kubectl delete deploy nginx-master02-test
deployment.extensions "nginx-master02-test" deleted
[root@master02 ~]# kubectl get all
NAME READY STATUS RESTARTS AGE
pod/nginx-master02-test-79fc886b76-s2scw 0/1 Terminating 0 9m39s
pod/nginx-test-7dc4f9dcc9-vs2p6 1/1 Running 0 3d1h
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/kubernetes ClusterIP 10.0.0.1 <none> 443/TCP 3d6h
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
deployment.apps/nginx-test 1 1 1 1 3d1h
NAME DESIRED CURRENT READY AGE
replicaset.apps/nginx-test-7dc4f9dcc9 1 1 1 3d1h
deployment被刪除后,replicaset與pod被一並刪除
6.4 delete刪除replicaset
[root@master02 ~]# kubectl delete rs nginx-test-7dc4f9dcc9
replicaset.extensions "nginx-test-7dc4f9dcc9" deleted
[root@master02 ~]# kubectl get all
NAME READY STATUS RESTARTS AGE
pod/nginx-test-7dc4f9dcc9-kwrrr 0/1 ContainerCreating 0 3s
pod/nginx-test-7dc4f9dcc9-vs2p6 0/1 Terminating 0 3d1h
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/kubernetes ClusterIP 10.0.0.1 <none> 443/TCP 3d6h
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
deployment.apps/nginx-test 1 1 1 0 3d1h
NAME DESIRED CURRENT READY AGE
replicaset.apps/nginx-test-7dc4f9dcc9 1 1 0 3s
replicaset被刪除后,deployment會重新創建一個replicaset,保證pod的自愈機制不受影響
[root@master02 ~]# kubectl describe deploy nginx-test
......
NewReplicaSet: nginx-test-7dc4f9dcc9 (1/1 replicas created)
Events:
Type Reason Age From Message
---- ------ ---- ---- -------
Normal ScalingReplicaSet 2m14s deployment-controller Scaled up replica set nginx-test-7dc4f9dcc9 to 1
7. 權限管理
7.1 查看pod日志
[root@master02 ~]# kubectl get pod -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE
nginx-test-7dc4f9dcc9-bklg4 1/1 Running 0 6m45s 172.17.54.3 node01 <none>
##該pod創建在node01上
[root@master02 ~]# kubectl logs nginx-test-7dc4f9dcc9-bklg4
Error from server (Forbidden): Forbidden (user=system:anonymous, verb=get, resource=nodes, subresource=proxy) ( pods/log nginx-test-7dc4f9dcc9-bklg4)
##此時為匿名用戶,無權限查看日志
7.2 為匿名用戶綁定管理員角色
[root@master02 ~]# kubectl create clusterrolebinding cluster-system-anonymous --clusterrole=cluster-admin --user=system:anonymous
clusterrolebinding.rbac.authorization.k8s.io/cluster-system-anonymous created
7.3 訪問(添加日志內容)
查看所在node
[root@master01 ~]# kubectl get pod -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE
nginx-test-7dc4f9dcc9-bklg4 1/1 Running 0 27m 172.17.54.3 node01 <none>
使用node01訪問172.17.54.3
[root@node01 ~]# curl 172.17.54.3
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
<style>
body {
width: 35em;
margin: 0 auto;
font-family: Tahoma, Verdana, Arial, sans-serif;
}
</style>
</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>
<p>For online documentation and support please refer to
<a href="http://nginx.org/">nginx.org</a>.<br/>
Commercial support is available at
<a href="http://nginx.com/">nginx.com</a>.</p>
<p><em>Thank you for using nginx.</em></p>
</body>
</html>
7.4 重新查看node日志
[root@master02 ~]# kubectl logs nginx-test-7dc4f9dcc9-bklg4
172.17.54.1 - - [31/Oct/2021:14:17:04 +0000] "GET / HTTP/1.1" 200 612 "-" "curl/7.29.0" "-"