目標網址
https://match.yuanrenxue.com/match/4

逆向題目
采集這5頁的全部數字,計算加和並提交結果

開始分析
打開chrome瀏覽器 打開開發者工具后,清除緩存,然后刷新頁面
在network面板中,可以看到 返回數據的api

並且在返回這個的api中 也可以發現一個問題就是 沒有直接返回頁面中的值

info 返回的是 HTML 的字符串
iv: "smohe"
key: "qfnuidgsej"
value: "kK1dv0l2iu"
返回的是 一些隨機字符串 每次刷新 都不一樣

然后在 network往下 拉信息的時候,發現了這個

對應的是 數字的 base64 編碼后的 圖片
那么在這里 我們可以想到的是 哦 網頁中的數字都是一張張的圖片組合起來的
那么在這里我們可以有一個想法 就是做映射關聯
在python中 建立一個 字典 key的值為 圖片的base64編碼 value的值就是對應的數字
然后做判斷即可

我們首先可以從 返回的數據api下手看一下 具體的請求獲取的是哪些 數據
哪些數據是有用的 哪些數據是迷惑人的

在 api請求數據的 堆棧信息 請求點里面 跟進去看一下
進去 進行格式化 后,可以看到 是一個ajax的請求

代碼也沒有加密,可以很清楚的看到一些數據是代表什么意思的
我大概給大家解釋一下 這些代碼的含義
我們可以看到的是 success 中
data 就是 這個api 發送回來的包 其中
================================
datas = data.info 就是 返回的 info值 賦值給了 datas
$('.number').text('').append(datas);
就是在網頁元素的class 名稱為number 把這個datas 添加進去
這個就是數字圖片的返回數據
================================
var j_key = '.' + hex_md5(btoa(data.key + data.value).replace(/=/g, ''));
定義了以一個 j_key的變量 把 data中的key 和value 先進行拼接
然后進行base64的編碼 再把這個編碼里面的等於號 進行制空
最后進行了一個hex_md5的加密 在進行到字符串
================================
$(j_key).css('display', 'none');
把包含這個class名稱為 MD5值的j_key 的CSS 進行修改
添加以一個屬性為 display:none 的展示效果
其實就是 不展示
================================
$('.img_number').removeClass().addClass('img_number')
把 class 名稱為img_number的 刪除掉
並且重新添加一個叫做 img_number 的class

在這里我們可以看到很多關於前端操作的一些代碼,畢竟這道題目是css加密
所以我們可以在elements的面板中看看有沒有什么新的發現

可以看到 每一個 <td></td>標簽 包裹的就是 一組數字
並且 其順序都還是不一樣的 而且顯示的數量也是不一樣

當然我們也可以看到 style的樣式 直接明了的看到了
不顯示的數字圖片 style里面都是有 display:none 的
也就是不展出
並且可以看到 left的屬性值 也是不一樣的
越靠近左邊的 其數值就越小 有的甚至是負數
也就是說 越小越排名在前,如果是0的情況就根據展示順序排序
那么在這里我們就可以通過數值的大小 來判別數字的排序問題了

腳本編寫邏輯
開始的話,我們可以先建立一個字典,字典的key值為圖片的base64的編碼值,value就是對應的數字
====================================
然后 做 api的請求 獲取 data.info 的值 也就是 返回的一大串的字符串
我們可以通過正則去匹配出每頁的十組圖片數據
可以建立一個list 列表 來存放這個數據
====================================
然后我們獲取 data.key 和 data.value 的值 然后進行 base64的編碼 判斷 編碼是否有=號
如果存在就替換為空,在進行一次md5的加密 這個MD5比較好扣
通過測試 網頁中的MD5的加密 是普通的MD5加密,沒有進行魔改
自己可以通過一些第三方庫 直接使用
====================================

通過格式化 info的數據 我們是可以看到 每條圖片數據中都有 一個MD5值產生
那么我們就可以通過 查找判斷的方式 獲取到不一樣的MD5值的圖片的數據
因為之前我們分析過知道 如果圖片的MD5值 如果和 j_key 的 值一樣的話
就會添加 display:none的屬性 也就是不展出 我們獲取不一樣的MD5知道數據即可

然后把 獲取到的展示圖片的數據 重新存放到一個列表里面
這個時候 就需要進行 style left 的數值大小的判斷了
數值越小 排名越前 如果都是0的情況那么就按照順序排
這個時候還是需要通過正則的方式去提取 style left的值
獲取到后 進行排序
=========================================
排序好后,然后通過最初的圖片映射 吧之前對應的圖片編碼值 和 數字對應來進行獲取
最后進行相加即可

腳本參考
# coding:utf-8
# @Author : Steven
# @QQ : 2621228281
# @Email : 2621228281@qq.com
import requests
import base64
import re
import hashlib
num_dict = {
'iVBORw0KGgoAAAANSUhEUgAAABQAAAAdCAYAAACqhkzFAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsQAAA7EAZUrDhsAAAMTSURBVEhLrZY/TBNRHMe/bY82LeGA0Dp4NTGYqO1gdKEMwmQcGh38M5CQlGDSwWiMAwwYg2iCJsZJQ9CJ0ETsQMJgwuagLIUFXIAFXNoYcqDloLRXrq3v7v3aXktbSPCTXO77fZRvf/feu9+r5dz5iwX8R+oESigMPka6/wb2vSJUBx+1QoVD3kTz7DScb+f4YBVHA6U+ZKLPsON1IE9DtbDLP9AxEIawRgOEle4cKYSD+ZeQq8IcKquMXTbyOllPL7aiEWgSDRCmQAnahyHsiGQZruUvkIKXcObyFeM62zcOd1ylvwJ5MYDkuxA5Tjlw8A2S12iyGM7YODrujsFqfqTFCJw9L+CWyTPS3QPIBMgwKFBC9n4AaW4AdQVtQxEy1czBObkIJznAi9TDO6SLgVIYqt9QBq5YFEKCTC2momg2VXngD5bmnAc+uIqUIXQUOL/X3hJl5mHfUEgzPJ04pMUxAnN+CYeG1UlAmCLZANtqAk2kARG5m1zxQI9paWUZAsmGsArLnxOh0ZSxwCBypjwo2zQPxzCTgJ2kTtbbZ9zZ/7pRKO8WOOWqrX9iePyJiqnNGgTTuhRhgT5o5kc+JaeosDYssHbpx+OtXEziSIWqx0fqOFpg7ns2Zd24s8B1WE0V5h2mJW/ELTc0kjo2Zcm4s8ClikCIlR+si59tZpL66yosc2U8clM8bhgDkfVFUzuqR569rqXOqG7CPsOlEWiJJSraUaa/i3Q9upC94CHNCtr4WXoN+aJMzcFlakd73eGG5wnuhZHykmZ1tnx9TboYqDfNWLxoWDvqhfK+h0w1Pcg87cUBOavMmu1HMoxShuXJNNpNi7N3ewLJTyEUzIdQIIT0wgQ7EcmzxWifZMcEOZ3KY3Qwgp3RQOnbOfqJx5XGtlSOS4aK1tlHEIcXyHNsrW0dY6SBFX0ufShc70S21OwE5AR+lb+ZVfb5OVpGviGTTkHeSmBfScJqtdX55SAFoY0OsMXxISM6SvvNrshwrS7A9WoENupyv+O/oGm831sslno/RU6OsvsHu3+3yQH/AOyW6SvqnweCAAAAAElFTkSuQmCC':0,
'iVBORw0KGgoAAAANSUhEUgAAABUAAAAcCAYAAACOGPReAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsQAAA7EAZUrDhsAAAD0SURBVEhLY5RVUPvPQGXABKUJAA2GvzP3Mry6f5PhzfI4qBhuQNjQqD6Gzxc3Mjxzk2H4CRUiBHAYKs3wP7Gd4evhSwzPWr0ZPvBBhYkEqIaaBzL8nrmS4f3FfQzP6oIY3smwM/yFSpECkAyNY/g2q4PhhZsBwxegy/5BRZlfP2HgIdbfUIAnTD8xCGyuZ5AyW8jATqmhzD9fMwjumsUgbWPKwJu3AipKGkAydC8DZ24sg5SGDQNPei8D01OoMBkAydCnDIyHTkHZlAE8YUo+GDWU+mAEGfq46RCUhQAUGypbZwdlIcBoRFEfjBpKfUADQxkYAKYHOb9g+7HMAAAAAElFTkSuQmCC':1,
'iVBORw0KGgoAAAANSUhEUgAAABQAAAAdCAYAAACqhkzFAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsQAAA7EAZUrDhsAAAKCSURBVEhLrZZLaBNRFIb/PDp5SFMxjqVOAjYLNUGUbhI3cdEGwaAgbmopWFIQBEUwFhQVldIqCuqilLoymEVVlCqWuNdVXRk31Y1uTKAQMRI0ycQk453JaWaSJjYPPxjmnJPwcefOuSfROXftlvAfaSAUIIXOITfuR9bBQzQBZfqEEzPgVuPY8uIeuMXPVK2lVnjoCrKzJ5F2mKqSZpi/xGCfCEOfpAKhCkPz+HEpgN9sRVpMoqjcJZMJBSVS0Wfeoz94CkaNVE93wOOqygyZr9i+cBnOwT3YsXe/cvUPDsMxHcPWTOU7MmWbD+m5i5RVUIUKGfQt38DOA0dgufuSauskoYuE0RuchV0jzQ8FIAqUMFShmIB9+jhs559SoQnJKKwLcZgpBVwoTFLIUIXXTsMaqdvhZjz8qBECRYeXog2P3CoJts8UMko2F0UdC90o2ihkcAl1mzoTnnGh0kwyGRhXKWR0IBRQOOZGnjL57RsjFDLaF87MI+1Ru9+ysgSOYpn2hKEovo+71RMjfoJtKkpJhRaFAsozr5C67kOOKvLe2e+cBVfXaZsLhSD+LD3DGluZum8p5RA06tt/C4/exK83D7A2xKNEJT07UfzV0aaHoImQHnFuDGlNv8kja2BkBObF5ieqgdDf8BG3PboAPrBx/tVTN7H9KMTuI+WxVQesIRUHPzWKnndU2ATNCgUUn9TKrB8eY8DbukxGFYZu4+dBVWZZYXPvxC3oKG8VEnqRn1R7rCfBfi/Gahu2VSpC3wRyDiViiOhdDre9snUqwsOCZnqkYHhLYSfIb9n5+psESerq6nvOPMylrLDEa7q3C7L7hrVt0z1Fu9Dor0g3AH8BJlTqZkAngxQAAAAASUVORK5CYII=':2,
'iVBORw0KGgoAAAANSUhEUgAAABQAAAAdCAYAAACqhkzFAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsQAAA7EAZUrDhsAAALaSURBVEhLrZVPSBRRHMe/O+rOuuaUyRoyBlGQfw5lh9xTekg8qIdMKSsQFKRAD0WUROhBCIlSBD1YQsJKQSB1iRa8VRf1Up4UQiNcRVw1nXVdx3V3euP+ZnZmR9EVP/CY3/vx5sPMe+/3nu3suYsKjhGrUCxB5GErNssKERIEyDzlIYOX/MgY+4r0zm5w85ROwCRU2j1Yu+fGhi7ZG072Iau3Bc6BacrE4ejJ6EKgySyzy+yrdptpIKJ8HlbahrHZKFImjnEcIeHU6FuIlfk4U3AJObstH2L9C7hmJKTQKEBg0h7sUE/DJLT5x5FbeRWZ99kcTVFSY9wDR/kN5Pxkn6vBFyPUTjFhEPYjs6YBqYkiE/NIfTeODOqpyEUNFMUwCNmy7bNyJr5M787pfuwxhwfhh+1YhWIxtgWKGXafh6IYSQuVjssIUgxMwdFLIZGc8IEHKxV5iFL3xGg37AnzfnAtu68jUlYFueIa1i4IiFDaOfYa2XcGqRfHKnzlxVzdeepYSZVmkfXyERwfrGWnktQvc7If6T62yrxhVRKwCvX6jTet3KK8C4EiN5Y6hrEw6YV811rLhzwPRSi19dhqqmFCFzvINPzI7rwN51B8ZQ4pNNA4iNW2UgTpVOL835Fb0qz/atL7EEPNyPrm01+MutwIPaUOI3khw9Y5aTggeISu1FN8RCHm5YQX7fQ8qlDk9WpR4eRlinQhW37rDtgXpc1Yz2xrsYtLg4StCHz+iHD1IazVPQgY6hnSLzgGKGbov6y4irHY58W/T13YKS2grIHCGoTfeLHcV4V1w9V6+v0zwz2j78MuSH9uYp2SKhwbnKbvYB5hJjHOmyo7OdIC4ckP6segL5wAb7rR1Jd5dslrzSxLYQeE6/ktXbYVCmJp0YfghpRQKbWPsVVXjs0iEWGBxzalVXhZQtrMFJwj/eCHJigbY2FuFpFI7EJNvvT2wPf3NxRF1QD/AbAv8WdRHzjKAAAAAElFTkSuQmCC':3,
'iVBORw0KGgoAAAANSUhEUgAAABUAAAAbCAYAAACTHcTmAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsQAAA7EAZUrDhsAAAHHSURBVEhLrZW9LwNhHMe/WrT10mrKVE2EROIfUAuTTQxMLISBQSxeIjQSTZRIsYgYhYVRIrWzaCxiMjFVoqjWaatPaR9Pe09bbfT6XHKf5Mn9vne9T+55fs/1qhxtnRRqWD1DcLILSR5Nfg+aR495ktHxoyBDiA8WhOVQJaXeKUgtPCggLrXPs6dsxzePSghLU9sjiBh4qICYtG8fUo8Z6UxNXlEvZc+WRUDaC+LpR5SnhssLGHldjopS6l1BpFWuda9XsEwH5KCAstS5iU/WHHkLSbAerAmtl8JvupH0DOCDN8d4e4q6wyc5VKCslHrdCHdwI7mHZXZHrgX4X9r3d9oElvMN1Io9ZJZ/pL1IeIbz06598KFx8UYOgpRI7fg52UWIdzszbev4Mqp4FKVYOrGJSG6Ts27btmZUTTtHQcrWUVpy4otHk39PuNulyFL7GOJ7hXWsCfhgK/mPVAOTstfwaAEhMz9DHmF1zalexyIcbj81UUqh0TBdr9OS7muDDoRAz4ZBxajmN2dggqJrepKE+g8fWFPvXPkeaPDhE0MzaeIrhpfnAGJRSTvp+1sQJBFHOBTUTppOp7LHzM7STGpusvEK+AUL4d3X/AgqvQAAAABJRU5ErkJggg==':4,
'iVBORw0KGgoAAAANSUhEUgAAABUAAAAcCAYAAACOGPReAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsQAAA7EAZUrDhsAAAIxSURBVEhLrZU/aBNRHMe/bWKexnoiaSg0FSSCaAfFwT+L7dKloUs7OqRVcHBwcZOCiCAOhk4dxAwdHFRwEEoRSjvoZNqhdDE4tC7aIYmWvOiV1941vnf51dy7S0ou6Qfu+P5+B9/7/e7e+72us+cuVHHE+EzF0jcUzlPQCjyH/itphChUdKub+bcCXv4tVQr7hsp0hmNqWXsob5ek6kWVqUxneNpPw1yfxi+nWo7Y02uIzjkPAuFUWucSrKNqvzEcoUWSAdFNbyewSxJK/SQZEN1U+0kCXaSCopvGGfZJgsv2SQbFY2rI+jqn+Y/ipbYr1dap/WYVWzfra0q98f/nkDDBcWwjj+j7WbC5Fcr6aV6pxG2oEMzAn8EbKDx+ja31jxBytTRCM7WNepVhIWRl6qKEB9tIovDsA8w7fuPWR9/QPezenQAfTmKHUg5iE32To4jkKJYc2r7G5ywiU6PoTWUQK7rKZ0lU7o9TUKN10wPyWUQfLOA0hQrz6jhs0orgporcI0TXXNUacVgkFe2ZSsI/iqT8tG162DBv23RvYICURG4K3xkVmKEZmIOkJWqXhUkrgpsm0tjJjKBCoRqRp+afkK7hMr2I6tgt0g1IXIf94h22l6dRkiPygMjXtzj5kgLCtaOeg3+fQNnR/u1pMaatRUVkYwHxyYfo9pwQTdpncnjol24o0PMpg74Rv6HCZbqC41/y6OG1QeKdpSGZO1HcRGz+FRKpyzgzlaUnXoB/3J2gmVZucHAAAAAASUVORK5CYII=':5,
'iVBORw0KGgoAAAANSUhEUgAAABUAAAAdCAYAAABFRCf7AAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsQAAA7EAZUrDhsAAANLSURBVEhLrZZNSFRRFMf/48e8UZtRktFkRsiEdCIKVwaikrlJbZG0MEGDwEWUIPaBQoiIZIJGG4mikoyyIBJKW4gbs4W66WOhtlAXzixq/HzGjG/8eN0378yb+5w3qdAPLnPOmXf/nHfvOfc+U+bR4zL+M/sTrW6F71Ih/CfskAQB2xQ2SyLMU5OwPr+HuEEPRfcSddXB96QeK04BOxQyZg7pWedhJi+GfiOp7sHqwC0s7RKMkyQIwaGfzGdmLFrUAbGlFOsC+ZBwaLwfjqoSZOSeQlpw5MBR1oQjw3NIoKdCGLz+Rfgn72PRTq7khr2tFpbX4TWLwJULTM+QY5Cp/PgGlkOCEJHauYegAieosEuUbUyxU1tDy9c3SOzdQ9AAvWh7ObeOblg7u8k+GJyoA4E8FzbJi5mdhGWCnAPCiVZhM5tMRuLsAFkHJyxakcu6hWy2QcL4pGpW3IR/6AsWZ35iYV4dnvkfWBp7C/+dMvWZ3SglFRzPpuR4WZYRHAtyWsFZ2fFhVha0mPEQFkbljALSoBHO1G7V1hMIQG54Cu+FY6zsVcyhTiI/hOQswq9PfdhyUIChiW7bbWQpOLDOBANMMknppLIcpIc6KasEzrYhJIv0KGPHlo/VrlrydBvFI2CDNXfyu+s4fLkVMdMUDuKBqbcRtvr3SA69BsN/phIByjaKKPvDPQLr7THyDPjcDOuwmxNwYaNBtaKKWse7YSI7GqbO70giWyHgVJdAE431covESipuah/t6fkGMzdNsruCv+FMveuIJzMavpMlEItryIskdGaERYc9XLnYsO0kk2Mr1YG1c3XkRZLgVXc0LDoxAYF7lY28yMm20ZfIbCkij5GfD4mrxFhRPQK5jepjR52XbEW0XCuRaOxcO40/ZLP1g+Wj2tqcKHMesZuRbKVEVl506O4eHRU9WCvWTnPEz47BMqjaOlFMNLJSErVgILsSiyMPsJ3Pp5yLnfY+LHeVclm6kdLWrJWgwR1VCGmkB7+z9V2u9H5wErv3uUZiiEh5xZK5G24UfaZBxiBcaUL6lIhYiigEFLFdgjHsUkztrNEJKvz7Y6K6A76rhfA5lS+TUB1KrHQ8SBztR8LDPpgMemR/nz0HAvgL80YzEyuMQpQAAAAASUVORK5CYII=':6,
'iVBORw0KGgoAAAANSUhEUgAAABQAAAAeCAYAAAAsEj5rAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsQAAA7EAZUrDhsAAAHhSURBVEhLrZY9LANhGMf/PprDVQkxyFXSVCKIwYStiZoqhoqEhTCQWCwiBBEDiUTMBpOJhKQDkw1L1YDFxoSlBi2tlurrrn2uH9xX2/sll/6f4X557n3e903LWhxtDCZSTr/mIXXY4thgjSHGwEp76o7amOkdmih8BHcMlDAULz4DW3htSlf8+RIaJn3Fd8i2ZxAiGeK3sK34UrE4oTCP6JAT31TWneyg8jmdixKyNQ/eOCqCF7AuBKgoRigs48NlR5LK+rP1PEnBwuRmfnf8Kn0rUZhQWEfEJU/if3cSBQmTmwN4o6zUnYRxobh2kb5sd7X+PcWXDQvZohthee3EfWedy042F4PCCXzmTLbGf4hKyn8xJtwYRthGGU/gd9OnQgkDwh7EXB2ZU2G5v0TVFRUK6At7xxCzUxbhb/YoKaMrTM724J2yNIxqha2Si47Qi1hndqtw9wHFYUS7+hF2jaeytnDKi2jGFwfv36GcT6JRQMg9ncqaF+zPwTVe+mi84uc2t4+qbhcZjQ49+GrN7BVYHu50ZRLqwt5BxLLLh6qHfUraqAtHnIhSFG8CcGfa05VRFSZahcxRQ/wZllPKOqgIPfi2yzeBSPAVFRT1UBF2I5GzflzwEWWU9TD5zxLwC1sVsHrJiVs0AAAAAElFTkSuQmCC':7,
'iVBORw0KGgoAAAANSUhEUgAAABQAAAAdCAYAAACqhkzFAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsQAAA7EAZUrDhsAAANtSURBVEhLrZXfS1NhGMe/rumZbR4nOcO2IA1CvQi8UW8y8EJqZCR1IQiKwvRCuiqTfomtkkrqIpN+EFSGNaFECL0IbzQvnH/A6EavNiinJVubO/5a73nPs51zNqf04wPjfJ8X9uV5n/d93ifr8JFjcfxHMhueuYS1dieiFTZIgoAtvihBCAVhnptErvshDAG+qGMHwzJsvh7Cj5MO9vfMGCQ/Ckb6sP/2F1pRMNCXsGPz/Vt8TzEzSiwz/qMFxrbgwEr7I0Tb7LSioDe8OYSVGhHbFOYEZ1DcVIfisuMo4r86ONxTyEsai1jpGcK6xlNj6MRaQznWKTL4p1BU5YLRqy1UAFmvumDtGEN+wlQoR7SnigKd4Qls2EiyDVs/dSGLojRmrsIyF6QAiFQ0ktIaslokspMzMT4gmQFDMEyK1ZO+MqqhL4x9JFn1EK8m+Yeohl4vu2Ok4UCsWa1LOmw3FaWkAbNfvTqaGg4jd86fXAjX34JUS0EK8YGX+FlBARZhfjpJWmfIbnlnHwoX6PiEUiy9mEVkwIV4ubKEWheksVksXSilekvI/9APwcsDTnqn2JsQ81zDikPQFTsdCXmf+2Ht9FCsoMuQE/DAdHkQBeqt2BHz9CDy3XozmZQM7dh+Pozlen3rGViUzRa22COxSWsycj8fcLfA9E69/JoM5T4exTeNWe7CBA6x1rOXKK1XXCK33gSsdBvkfg7eHdX1s5phG8ustxprPJCL3QWxW/+SJLE7Ib25h6WjghKHvCh2tsDIEqUMqxBrT5ixa+3zZDaTCUxCaPXAmtiKWI1f1M+KYXUr1hxcMSRYpvtJ70KgH7k+tdLhGhe/FYphvV1zCHv3cQLjguYlsjn4gSmGooANLv4N+TAUw2AIVF5GIbbaSO7BlqOQFEMK8cdFMRxZhIkLGRGRBhfp3XAhVimSZkbBgMYw8AQmH1ecWGVH2qzQEo3kYfVUGKvqtpA35+EPsmLIDiLn/hQsSsBgs6J3HKHHLYin+p5n47XtLMLP3MleN7DZY+me51rXevE741huLkeM4gQ5bOIp40BgM5qLJAZpEYUdpyHMUKx8FLJunIPtutpaCdZZD8vDPtXM5J/BwUbVTGaHQS9Thu0rF9kUrELEJmKDGSW2J7DTzPbNwzIyiOyPX2lVJYPh3wL8BvLZG6cpuRANAAAAAElFTkSuQmCC':8,
'iVBORw0KGgoAAAANSUhEUgAAABQAAAAcCAYAAABh2p9gAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsQAAA7EAZUrDhsAAAMzSURBVEhLpZZPSBRhGMYfV9dpdV3UHDVXIw1KDUwJVy/VLTAVWugQRJqUpxAkFyuMIBMPWRGYiCGGC7J0KCRKL13Si9pBvKiH9NIYoavgqKvjujt9M/OuM+uustUPvpn3edl9eL/3+7Mbl3fqjIxoFDnhb76Bzcoi7No47FI6QRJxbHYKKQOdSPi8RFmdKIZ2BDt6sHazCNuUiY4E67cXSLvtJq1hojdhx57nPX4fMDOxL3OSMiihwmHzchu8njrSGmGGclc/Vit5BEibxEXw7bdgzy9BZqEyziLP5UH6Cn2AsV3ZBF+DnVTYlBuxNe/CGqcpSHPIdl6DeY60EXsdfCNtWLVp0rQyhhOORrU6vcKOamyEzNgUU4fuRTdTWHIj6fUkLCSDfCl2GrR433CvuAB+ipXqLM8iVzCMd29gFSiGDb4rWi/J0IE9fr88QFhEAoWHMwWzIFLMeplbAaV3ZFiIIPXjb4gXvBQx+Ax1MfUeGuEM1cYKZzMauhFv2Arg2X6k8CgCuRkUKaQgWGOo0CwYHLlS+LocJA7B3oKdMmOfOMi8wdDUy84nxQrrtU8h1egbNpyLkAbr9T1rQO/h5EtYJ0Q9wRVguXsYG30tCFwq1HJ2B4KtPdiY6cfyac3NrD4VJMQpk1ROij7uyJk/dmTIcgxjXT7+aUK27OsFOZN56BWqjIOrf4isWRHxlImOiLSh+0iaJqnCKmTPA4aMpREkVpcjx/UWGdOLSBZDNw0booC0iY/IuVoO6+NxoJjXbyVRK+LwCzYGAp7v+FWprbR5dhDZ1Z1RKowZB/y5+rbhhK/qO2bD/FMncb7kHClGRT07vxRDgGVgSo1iNrTZUnChrIQUm26zA5sUm4QZcJNa/G89bHDD+6SCFkRCem8Vkp9r1114hfbDToaBmlcQH4TMgMSFL0giM4Vww2Z2AqaGsd3qpIQB5We1bxTe7mqsh46ctIjU9kfq/gsRPuWuUfy8XkCCrRzbexTBz0yCpBRMzCzDdRfcgd/mIxdFYveiNsLNOGEMWc6qCDOFA4vCbu7WJmzXOrDF21SjEBz7x2Bm/xisQ90wf5inbCT/dVIiAf4ApbEnkB6qHqsAAAAASUVORK5CYII=':9,
}
#api請求數據
def get_data(page):
url = 'https://match.yuanrenxue.com/api/match/4?page={page}'.format(page=page)
headers = {
'accept': 'application/json, text/javascript, */*; q=0.01',
'accept-encoding': 'gzip, deflate, br',
'accept-language': 'zh-CN,zh;q=0.9',
'cache-control': 'no-cache',
'cookie': 'Hm_lvt_c99546cf032aaa5a679230de9a95c7db=1633332370,1633337457,1633440312; Hm_lpvt_c99546cf032aaa5a679230de9a95c7db=1633458394',
'pragma': 'no-cache',
'referer': 'https://match.yuanrenxue.com/match/4',
'sec-ch-ua': '"Google Chrome";v="95", "Chromium";v="95", ";Not A Brand";v="99"',
'sec-ch-ua-mobile': '?0',
'sec-ch-ua-platform': '"Windows"',
'sec-fetch-dest': 'empty',
'sec-fetch-mode': 'cors',
'sec-fetch-site': 'same-origin',
'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/95.0.4638.10 Safari/537.36',
'x-requested-with': 'XMLHttpRequest'
}
if page == 4 or page == 5:
headers['user-agent'] = 'yuanrenxue.project'
response = requests.get(url,headers=headers,verify=False)
data = response.json()
return data
#INFO數據處理
def get_all_img_lists(data):
all_img_lists = []
img_data = re.findall(r'<td>(.*?)</td>',data['info'])
for i in img_data:
all_img_lists.append(i)
return all_img_lists
def get_md5(data):
key = data['key']
value = data['value']
str_btyle = key+value
str_btyle = str_btyle.encode('utf-8')
j_key = str(base64.b64encode(str_btyle),encoding='utf-8').replace('=','')
j_md5 = hashlib.md5(j_key.encode(encoding='utf-8')).hexdigest()
print(j_md5)
return j_md5
#獲取展示圖片數據
def get_show_img_lists(all_img_lists,img_number):
update_img_lists = []
#遍歷每一組圖片數據
for img_list in all_img_lists:
#存放展示圖片的數據
img_number_lists = []
img_data = re.findall(r'<img(.*?)">',img_list)
for data in img_data:
if img_number not in data:
img_number_lists.append(data)
update_img_lists.append(img_number_lists)
return update_img_lists
#圖片數據排序處理 和 圖片編碼和數字映射
def img_data_sort(show_img_data):
for img_data in show_img_data:
num_list = []
for data in img_data:
size = float(re.findall(r'style="left:(.*?)px',data)[0])
img_num_data = re.findall(r'data:image/png;base64,(.*?)" class=',data)[0]
img_num = get_img_num(img_num_data)
new_tuple = (size,img_num)
num_list.append(new_tuple)
print('==============================')
print(num_list)
# 排序
num_list = sorted(num_list,key=lambda x:x[0])
print(num_list)
print('==============================')
#數字拼接
real_num_list = []
for num in num_list:
num = num[1]
real_num_list.append(str(num))
num = ''.join(real_num_list)
print('拼接好的數字:',num)
print('==============================')
num_sum_lists.append(int(num))
print(num_sum_lists)
#圖片編碼映射數字
def get_img_num(img_num_data):
for key,value in num_dict.items():
if img_num_data == key.strip():
# print('數字:',value)
return value
if __name__ == '__main__':
num_sum_lists = []
for i in range(1,6):
data = get_data(i)
all_img_lists = get_all_img_lists(data)
j_key = get_md5(data)
show_img_data = get_show_img_lists(all_img_lists,j_key)
img_data_sort(show_img_data)
#計算所有頁數的和
num_sum = sum(num_sum_lists)
print('所有數字的和為:',num_sum)
print('==============================')

其實這個題目整體來說並不難,難的是編寫腳本的時候需要注意的一些細節點
自己也是一個腳本菜鳥,一看這個腳本只有100多行的代碼
但是自己在寫的之前 足足在紙上寫了滿滿的5頁紙
就是為了把這個整體的思路 和 編寫的流程給捋通
搞懂了流程 才可以相對比較順暢的寫下去
====================================================
還有每個人的對python語言的了解 有多有少的
可能python對於一些列表排序 或者 一些爬蟲思路上面
有更佳優化 有更加簡單的代碼可以書寫
但是我還是願意 用最基礎的方式 這個可能導致有些代碼的多余
但是整體閱讀起來的通順性比較良好
=====================================================
寫這個腳本 其實 我花了比之前的題目更佳多的時間
也足夠表明 自己在前端知識領域 和 python的基礎知識的薄弱
