如何在 CPU 上優化 GEMM


如何在 CPU 上優化 GEMM

(TL;DR) TVM 提供抽象接口,允許用戶分別描述算法和算法的實施組織(所謂的調度)。通常,在高性能調度中編寫算法,會破壞算法的可讀性和模塊化。嘗試各種看似有前途的調度也很耗時。在 TVM 的幫助下,可以有效地嘗試這些調度,提高性能。

將演示如何使用 TVM 優化矩陣乘法,通過簡單地添加 18 行額外代碼,實現比基線快 200 倍。

在 CPU 上執行的密集計算應用程序,有兩個重要的優化:

  1. 提高內存訪問的緩存命中率。復雜的數值計算和熱點內存訪問,都可以通過高緩存命中率加速。需要將原始內存訪問模式,轉換為適合緩存策略的模式。
  2. SIMD(單指令多數據),或者稱向量處理單元。每次都會處理一小批數據,不是單個網格。需要統一模式,轉換循環體中的數據訪問模式, LLVM 后端可以降低為 SIMD。

實際上,所有方法都是repo 中提到的一個子技巧 。一些已被 TVM 抽象自動應用,由於 TVM 的限制,一些不能簡單地應用。

下面所有實驗結果,都是在配備 Intel i7-4770HQ CPU 的,15' MacBook 上實現的。對於所有 x86 CPU,緩存行大小應為 64 字節。

准備和基線

將演示如何使用 TVM 優化矩陣乘法。在實際演示前,先定義這些變量。然后編寫一個基線實現,這是在 TVM 中編寫矩陣乘法的最簡單方法。

import tvm
import tvm.testing
from tvm import te
import numpy
import timeit
 
# The size of the matrix
# (M, K) x (K, N)
# You are free to try out different shapes, sometimes TVM optimization outperforms numpy with MKL.
M = 1024
K = 1024
N = 1024
 
# The default tensor type in tvm
dtype = "float32"
 
# using Intel AVX2(Advanced Vector Extensions) ISA for SIMD
# To get the best performance, please change the following line
# to llvm -mcpu=core-avx2, or specific type of CPU you use
target = "llvm"
dev = tvm.device(target, 0)
 
# Random generated tensor for testing
a = tvm.nd.array(numpy.random.rand(M, K).astype(dtype), dev)
b = tvm.nd.array(numpy.random.rand(K, N).astype(dtype), dev)
 
np_repeat = 100
np_runing_time = timeit.timeit(
    setup="import numpy\n"
    "M = " + str(M) + "\n"
    "K = " + str(K) + "\n"
    "N = " + str(N) + "\n"
    'dtype = "float32"\n'
    "a = numpy.random.rand(M, K).astype(dtype)\n"
    "b = numpy.random.rand(K, N).astype(dtype)\n",
    stmt="answer = numpy.dot(a, b)",
    number=np_repeat,
)
print("Numpy running time: %f" % (np_runing_time / np_repeat))
 
answer = numpy.dot(a.numpy(), b.numpy())
 
# Algorithm
k = te.reduce_axis((0, K), "k")
A = te.placeholder((M, K), name="A")
B = te.placeholder((K, N), name="B")
C = te.compute((M, N), lambda m, n: te.sum(A[m, k] * B[k, n], axis=k), name="C")
 
# Default schedule
s = te.create_schedule(C.op)
func = tvm.build(s, [A, B, C], target=target, name="mmult")
assert func
 
c = tvm.nd.array(numpy.zeros((M, N), dtype=dtype), dev)
func(a, b, c)
tvm.testing.assert_allclose(c.numpy(), answer, rtol=1e-5)
 
evaluator = func.time_evaluator(func.entry_name, dev, number=1)
print("Baseline: %f" % evaluator(a, b, c).mean)

輸出:

Numpy running time: 0.009345
Baseline: 3.291115

在 TVM 中,檢查較低級別的 IR,調試或優化調度。這是使用基線調度生成的 IR。

print(tvm.lower(s, [A, B, C], simple_mode=True))

輸出:

primfn(A_1: handle, B_1: handle, C_1: handle) -> ()
  attr = {"from_legacy_te_schedule": True, "global_symbol": "main", "tir.noalias": True}
  buffers = {C: Buffer(C_2: Pointer(float32), float32, [1024, 1024], []),
             A: Buffer(A_2: Pointer(float32), float32, [1024, 1024], []),
             B: Buffer(B_2: Pointer(float32), float32, [1024, 1024], [])}
  buffer_map = {A_1: A, B_1: B, C_1: C} {
  for (m: int32, 0, 1024) {
    for (n: int32, 0, 1024) {
      C_2[((m*1024) + n)] = 0f32
      for (k: int32, 0, 1024) {
        C_2[((m*1024) + n)] = ((float32*)C_2[((m*1024) + n)] + ((float32*)A_2[((m*1024) + k)]*(float32*)B_2[((k*1024) + n)]))
      }
    }
  }
}

阻塞

提高緩存命中率的一個重要技巧是阻塞——數據塊將逐塊計算。塊內部的內存訪問是一個具有高內存局部性的小鄰域。選擇了 32 作為分塊因子。該塊將填充 32 * 32 * sizeof(float) 即 4KB 的緩存,總大小為 32KB(L1 數據緩存)。

bn = 32
kfactor = 4
s = te.create_schedule(C.op)
 
# Blocking by loop tiling
mo, no, mi, ni = s[C].tile(C.op.axis[0], C.op.axis[1], bn, bn)
(kaxis,) = s[C].op.reduce_axis
ko, ki = s[C].split(kaxis, factor=kfactor)
 
# Hoist reduction domain outside the blocking loop
s[C].reorder(mo, no, ko, ki, mi, ni)
 
func = tvm.build(s, [A, B, C], target=target, name="mmult")
assert func
 
c = tvm.nd.array(numpy.zeros((M, N), dtype=dtype), dev)
func(a, b, c)
tvm.testing.assert_allclose(c.numpy(), answer, rtol=1e-5)
 
# By simply tiling the loop 32x32, and hoisting ko, ki outside the blocking loops,
# we can see big speedup compared with the baseline.
evaluator = func.time_evaluator(func.entry_name, dev, number=10)
print("Opt1: %f" % evaluator(a, b, c).mean)

輸出:

Opt1: 0.310688

這是阻塞后,生成的IR。

print(tvm.lower(s, [A, B, C], simple_mode=True))

輸出:

primfn(A_1: handle, B_1: handle, C_1: handle) -> ()
  attr = {"from_legacy_te_schedule": True, "global_symbol": "main", "tir.noalias": True}
  buffers = {C: Buffer(C_2: Pointer(float32), float32, [1024, 1024], []),
             A: Buffer(A_2: Pointer(float32), float32, [1024, 1024], []),
             B: Buffer(B_2: Pointer(float32), float32, [1024, 1024], [])}
  buffer_map = {A_1: A, B_1: B, C_1: C} {
  for (m.outer: int32, 0, 32) {
    for (n.outer: int32, 0, 32) {
      for (m.inner.init: int32, 0, 32) {
        for (n.inner.init: int32, 0, 32) {
          C_2[((((m.outer*32768) + (m.inner.init*1024)) + (n.outer*32)) + n.inner.init)] = 0f32
        }
      }
      for (k.outer: int32, 0, 256) {
        for (k.inner: int32, 0, 4) {
          for (m.inner: int32, 0, 32) {
            for (n.inner: int32, 0, 32) {
              C_2[((((m.outer*32768) + (m.inner*1024)) + (n.outer*32)) + n.inner)] = ((float32*)C_2[((((m.outer*32768) + (m.inner*1024)) + (n.outer*32)) + n.inner)] + ((float32*)A_2[((((m.outer*32768) + (m.inner*1024)) + (k.outer*4)) + k.inner)]*(float32*)B_2[((((k.outer*4096) + (k.inner*1024)) + (n.outer*32)) + n.inner)]))
            }
          }
        }
      }
    }
  }
}

向量化

另一個重要的技巧是向量化。當內存訪問模式一致時,編譯器可以檢測到這種模式,將連續內存傳遞給向量處理器。在 TVM 中,可以使用vectorize接口,提示編譯器這種模式,這樣就可以大大加速。

選擇向量化內循環行數據,這是緩存友好的。

s = te.create_schedule(C.op)
mo, no, mi, ni = s[C].tile(C.op.axis[0], C.op.axis[1], bn, bn)
(kaxis,) = s[C].op.reduce_axis
ko, ki = s[C].split(kaxis, factor=kfactor)
 
s[C].reorder(mo, no, ko, ki, mi, ni)
 
# Vectorization
s[C].vectorize(ni)
 
func = tvm.build(s, [A, B, C], target=target, name="mmult")
assert func
 
c = tvm.nd.array(numpy.zeros((M, N), dtype=dtype), dev)
func(a, b, c)
tvm.testing.assert_allclose(c.numpy(), answer, rtol=1e-5)
 
evaluator = func.time_evaluator(func.entry_name, dev, number=10)
print("Opt2: %f" % evaluator(a, b, c).mean)

輸出:

Opt2: 0.341067

向量化后,生成的 IR。

print(tvm.lower(s, [A, B, C], simple_mode=True))

輸出:

primfn(A_1: handle, B_1: handle, C_1: handle) -> ()
  attr = {"from_legacy_te_schedule": True, "global_symbol": "main", "tir.noalias": True}
  buffers = {C: Buffer(C_2: Pointer(float32), float32, [1024, 1024], []),
             A: Buffer(A_2: Pointer(float32), float32, [1024, 1024], []),
             B: Buffer(B_2: Pointer(float32), float32, [1024, 1024], [])}
  buffer_map = {A_1: A, B_1: B, C_1: C} {
  for (m.outer: int32, 0, 32) {
    for (n.outer: int32, 0, 32) {
      for (m.inner.init: int32, 0, 32) {
        C_2[ramp((((m.outer*32768) + (m.inner.init*1024)) + (n.outer*32)), 1, 32)] = broadcast(0f32, 32)
      }
      for (k.outer: int32, 0, 256) {
        for (k.inner: int32, 0, 4) {
          for (m.inner: int32, 0, 32) {
            C_2[ramp((((m.outer*32768) + (m.inner*1024)) + (n.outer*32)), 1, 32)] = ((float32x32*)C_2[ramp((((m.outer*32768) + (m.inner*1024)) + (n.outer*32)), 1, 32)] + (broadcast((float32*)A_2[((((m.outer*32768) + (m.inner*1024)) + (k.outer*4)) + k.inner)], 32)*(float32x32*)B_2[ramp((((k.outer*4096) + (k.inner*1024)) + (n.outer*32)), 1, 32)]))
          }
        }
      }
    }
  }
}

循環排列

查看上面的 IR,可以看到 B 和 C 的內循環行數據,都進行了向量化。接下來,查看 A 的訪問模式。在當前調度中,A 是逐列訪問的,這對緩存不友好. 如果改變 ki 和內軸 mi 的嵌套循環順序,A 矩陣的訪問模式,對緩存更友好。

s = te.create_schedule(C.op)
mo, no, mi, ni = s[C].tile(C.op.axis[0], C.op.axis[1], bn, bn)
(kaxis,) = s[C].op.reduce_axis
ko, ki = s[C].split(kaxis, factor=kfactor)
 
# re-ordering
s[C].reorder(mo, no, ko, mi, ki, ni)
s[C].vectorize(ni)
 
func = tvm.build(s, [A, B, C], target=target, name="mmult")
assert func
 
c = tvm.nd.array(numpy.zeros((M, N), dtype=dtype), dev)
func(a, b, c)
tvm.testing.assert_allclose(c.numpy(), answer, rtol=1e-5)
 
evaluator = func.time_evaluator(func.entry_name, dev, number=10)
print("Opt3: %f" % evaluator(a, b, c).mean)

輸出:

Opt3: 0.111449

循環排列后,生成的 IR。

print(tvm.lower(s, [A, B, C], simple_mode=True))

輸出:

primfn(A_1: handle, B_1: handle, C_1: handle) -> ()
  attr = {"from_legacy_te_schedule": True, "global_symbol": "main", "tir.noalias": True}
  buffers = {C: Buffer(C_2: Pointer(float32), float32, [1024, 1024], []),
             A: Buffer(A_2: Pointer(float32), float32, [1024, 1024], []),
             B: Buffer(B_2: Pointer(float32), float32, [1024, 1024], [])}
  buffer_map = {A_1: A, B_1: B, C_1: C} {
  for (m.outer: int32, 0, 32) {
    for (n.outer: int32, 0, 32) {
      for (m.inner.init: int32, 0, 32) {
        C_2[ramp((((m.outer*32768) + (m.inner.init*1024)) + (n.outer*32)), 1, 32)] = broadcast(0f32, 32)
      }
      for (k.outer: int32, 0, 256) {
        for (m.inner: int32, 0, 32) {
          for (k.inner: int32, 0, 4) {
            C_2[ramp((((m.outer*32768) + (m.inner*1024)) + (n.outer*32)), 1, 32)] = ((float32x32*)C_2[ramp((((m.outer*32768) + (m.inner*1024)) + (n.outer*32)), 1, 32)] + (broadcast((float32*)A_2[((((m.outer*32768) + (m.inner*1024)) + (k.outer*4)) + k.inner)], 32)*(float32x32*)B_2[ramp((((k.outer*4096) + (k.inner*1024)) + (n.outer*32)), 1, 32)]))
          }
        }
      }
    }
  }
}

陣列封裝

另一個重要的技巧是數組打包。訣竅是對多維數組的存儲,進行重新排序,展平存儲在一維內存中后,按順序訪問。

可以使用數組打包,解決 B 的訪問模式。觀察扁平化后 B 的數組訪問模式,在 K 維度上迭代時,這不是連續的。可以用維度 [K][N] 重新排序 B,使其具有維度 [N/bn][K][bn],bn 是阻塞因子,也是內循環中 B 的向量大小。這種重新排序,將 N 分成兩個維度 — bigN (N/bn) 和 littleN (bn) —新維度 [N/bn][K][bn] 匹配 B,從外循環到內循環的索引(no, ko, ki, ni) ,在展平后,導致 B 的順序訪問模式。

# We have to re-write the algorithm slightly.
packedB = te.compute(
    (N / bn, K, bn), lambda bigN, k, littleN: B[k, bigN * bn + littleN], name="packedB"
)
C = te.compute(
    (M, N),
    lambda m, n: te.sum(A[m, k] * packedB[n // bn, k, tvm.tir.indexmod(n, bn)], axis=k),
    name="C",
)
 
s = te.create_schedule(C.op)
 
mo, no, mi, ni = s[C].tile(C.op.axis[0], C.op.axis[1], bn, bn)
(kaxis,) = s[C].op.reduce_axis
ko, ki = s[C].split(kaxis, factor=kfactor)
 
s[C].reorder(mo, no, ko, mi, ki, ni)
s[C].vectorize(ni)
 
bigN, _, littleN = s[packedB].op.axis
s[packedB].vectorize(littleN)
s[packedB].parallel(bigN)
 
func = tvm.build(s, [A, B, C], target=target, name="mmult")
assert func
 
c = tvm.nd.array(numpy.zeros((M, N), dtype=dtype), dev)
func(a, b, c)
tvm.testing.assert_allclose(c.numpy(), answer, rtol=1e-5)
 
evaluator = func.time_evaluator(func.entry_name, dev, number=10)
print("Opt4: %f" % evaluator(a, b, c).mean)

輸出:

Opt4: 0.217310

陣列打包后,生成的IR。

print(tvm.lower(s, [A, B, C], simple_mode=True))

輸出:

primfn(A_1: handle, B_1: handle, C_1: handle) -> ()
  attr = {"from_legacy_te_schedule": True, "global_symbol": "main", "tir.noalias": True}
  buffers = {C: Buffer(C_2: Pointer(float32), float32, [1024, 1024], []),
             A: Buffer(A_2: Pointer(float32), float32, [1024, 1024], []),
             B: Buffer(B_2: Pointer(float32), float32, [1024, 1024], [])}
  buffer_map = {A_1: A, B_1: B, C_1: C} {
  allocate(packedB: Pointer(global float32x32), float32x32, [32768]), storage_scope = global {
    for (bigN: int32, 0, 32) "parallel" {
      for (k: int32, 0, 1024) {
        packedB[ramp(((bigN*32768) + (k*32)), 1, 32)] = (float32x32*)B_2[ramp(((k*1024) + (bigN*32)), 1, 32)]
      }
    }
    for (m.outer: int32, 0, 32) {
      for (n.outer: int32, 0, 32) {
        for (m.inner.init: int32, 0, 32) {
          C_2[ramp((((m.outer*32768) + (m.inner.init*1024)) + (n.outer*32)), 1, 32)] = broadcast(0f32, 32)
        }
        for (k.outer: int32, 0, 256) {
          for (m.inner: int32, 0, 32) {
            for (k.inner: int32, 0, 4) {
              C_2[ramp((((m.outer*32768) + (m.inner*1024)) + (n.outer*32)), 1, 32)] = ((float32x32*)C_2[ramp((((m.outer*32768) + (m.inner*1024)) + (n.outer*32)), 1, 32)] + (broadcast((float32*)A_2[((((m.outer*32768) + (m.inner*1024)) + (k.outer*4)) + k.inner)], 32)*(float32x32*)packedB[ramp((((n.outer*32768) + (k.outer*128)) + (k.inner*32)), 1, 32)]))
            }
          }
        }
      }
    }
  }
}

塊的寫緩存

阻塞后,程序將結果逐塊寫入C,訪問模式不是順序的。可以使用一個順序緩存數組,保存塊結果,在所有塊結果准備好時,寫入 C。

s = te.create_schedule(C.op)
 
# Allocate write cache
CC = s.cache_write(C, "global")
 
mo, no, mi, ni = s[C].tile(C.op.axis[0], C.op.axis[1], bn, bn)
 
# Write cache is computed at no
s[CC].compute_at(s[C], no)
 
# New inner axes
mc, nc = s[CC].op.axis
 
(kaxis,) = s[CC].op.reduce_axis
ko, ki = s[CC].split(kaxis, factor=kfactor)
s[CC].reorder(ko, mc, ki, nc)
s[CC].vectorize(nc)
 
# TODO: Add separate optimization step to discuss loop unrolloing
# unrolling is a loop optimization strategy which can reduce branch
# prediction failures and increases the chance of concurrent execution
# unroll kfactor loops
s[CC].unroll(ki)
 
bigN, _, littleN = s[packedB].op.axis
s[packedB].vectorize(littleN)
s[packedB].parallel(bigN)
 
func = tvm.build(s, [A, B, C], target=target, name="mmult")
assert func
 
c = tvm.nd.array(numpy.zeros((M, N), dtype=dtype), dev)
func(a, b, c)
tvm.testing.assert_allclose(c.numpy(), answer, rtol=1e-5)
 
evaluator = func.time_evaluator(func.entry_name, dev, number=10)
print("Opt5: %f" % evaluator(a, b, c).mean)

輸出:

Opt5: 0.215912

阻塞后,生成的IR。

print(tvm.lower(s, [A, B, C], simple_mode=True))

輸出:

primfn(A_1: handle, B_1: handle, C_1: handle) -> ()
  attr = {"from_legacy_te_schedule": True, "global_symbol": "main", "tir.noalias": True}
  buffers = {C: Buffer(C_2: Pointer(float32), float32, [1024, 1024], []),
             A: Buffer(A_2: Pointer(float32), float32, [1024, 1024], []),
             B: Buffer(B_2: Pointer(float32), float32, [1024, 1024], [])}
  buffer_map = {A_1: A, B_1: B, C_1: C} {
  allocate(packedB: Pointer(global float32x32), float32x32, [32768]), storage_scope = global;
  allocate(C.global: Pointer(global float32), float32, [1024]), storage_scope = global {
    for (bigN: int32, 0, 32) "parallel" {
      for (k: int32, 0, 1024) {
        packedB[ramp(((bigN*32768) + (k*32)), 1, 32)] = (float32x32*)B_2[ramp(((k*1024) + (bigN*32)), 1, 32)]
      }
    }
    for (m.outer: int32, 0, 32) {
      for (n.outer: int32, 0, 32) {
        for (m.c.init: int32, 0, 32) {
          C.global[ramp((m.c.init*32), 1, 32)] = broadcast(0f32, 32)
        }
        for (k.outer: int32, 0, 256) {
          for (m.c: int32, 0, 32) {
            C.global[ramp((m.c*32), 1, 32)] = ((float32x32*)C.global[ramp((m.c*32), 1, 32)] + (broadcast((float32*)A_2[(((m.outer*32768) + (m.c*1024)) + (k.outer*4))], 32)*(float32x32*)packedB[ramp(((n.outer*32768) + (k.outer*128)), 1, 32)]))
            C.global[ramp((m.c*32), 1, 32)] = ((float32x32*)C.global[ramp((m.c*32), 1, 32)] + (broadcast((float32*)A_2[((((m.outer*32768) + (m.c*1024)) + (k.outer*4)) + 1)], 32)*(float32x32*)packedB[ramp((((n.outer*32768) + (k.outer*128)) + 32), 1, 32)]))
            C.global[ramp((m.c*32), 1, 32)] = ((float32x32*)C.global[ramp((m.c*32), 1, 32)] + (broadcast((float32*)A_2[((((m.outer*32768) + (m.c*1024)) + (k.outer*4)) + 2)], 32)*(float32x32*)packedB[ramp((((n.outer*32768) + (k.outer*128)) + 64), 1, 32)]))
            C.global[ramp((m.c*32), 1, 32)] = ((float32x32*)C.global[ramp((m.c*32), 1, 32)] + (broadcast((float32*)A_2[((((m.outer*32768) + (m.c*1024)) + (k.outer*4)) + 3)], 32)*(float32x32*)packedB[ramp((((n.outer*32768) + (k.outer*128)) + 96), 1, 32)]))
          }
        }
        for (m.inner: int32, 0, 32) {
          for (n.inner: int32, 0, 32) {
            C_2[((((m.outer*32768) + (m.inner*1024)) + (n.outer*32)) + n.inner)] = (float32*)C.global[((m.inner*32) + n.inner)]
          }
        }
      }
    }
  }
}

並行化

可以利用多核處理器,進行線程級並行化。

s = te.create_schedule(C.op)
 
CC = s.cache_write(C, "global")
 
mo, no, mi, ni = s[C].tile(C.op.axis[0], C.op.axis[1], bn, bn)
 
s[CC].compute_at(s[C], no)
 
mc, nc = s[CC].op.axis
 
(kaxis,) = s[CC].op.reduce_axis
ko, ki = s[CC].split(kaxis, factor=kfactor)
s[CC].reorder(ko, mc, ki, nc)
s[CC].vectorize(nc)
s[CC].unroll(ki)
 
# parallel
s[C].parallel(mo)
 
bigN, _, littleN = s[packedB].op.axis
s[packedB].vectorize(littleN)
s[packedB].parallel(bigN)
 
func = tvm.build(s, [A, B, C], target=target, name="mmult")
assert func
 
c = tvm.nd.array(numpy.zeros((M, N), dtype=dtype), dev)
func(a, b, c)
tvm.testing.assert_allclose(c.numpy(), answer, rtol=1e-5)
 
evaluator = func.time_evaluator(func.entry_name, dev, number=50)
opt6_time = evaluator(a, b, c).mean
print("Opt6: %f" % opt6_time)

輸出:

Opt6: 0.066558

並行化后,生成的IR。

print(tvm.lower(s, [A, B, C], simple_mode=True))

輸出:

primfn(A_1: handle, B_1: handle, C_1: handle) -> ()
  attr = {"from_legacy_te_schedule": True, "global_symbol": "main", "tir.noalias": True}
  buffers = {C: Buffer(C_2: Pointer(float32), float32, [1024, 1024], []),
             A: Buffer(A_2: Pointer(float32), float32, [1024, 1024], []),
             B: Buffer(B_2: Pointer(float32), float32, [1024, 1024], [])}
  buffer_map = {A_1: A, B_1: B, C_1: C} {
  allocate(packedB: Pointer(global float32x32), float32x32, [32768]), storage_scope = global {
    for (bigN: int32, 0, 32) "parallel" {
      for (k: int32, 0, 1024) {
        packedB[ramp(((bigN*32768) + (k*32)), 1, 32)] = (float32x32*)B_2[ramp(((k*1024) + (bigN*32)), 1, 32)]
      }
    }
    for (m.outer: int32, 0, 32) "parallel" {
      allocate(C.global: Pointer(global float32), float32, [1024]), storage_scope = global;
      for (n.outer: int32, 0, 32) {
        for (m.c.init: int32, 0, 32) {
          C.global[ramp((m.c.init*32), 1, 32)] = broadcast(0f32, 32)
        }
        for (k.outer: int32, 0, 256) {
          for (m.c: int32, 0, 32) {
            C.global[ramp((m.c*32), 1, 32)] = ((float32x32*)C.global[ramp((m.c*32), 1, 32)] + (broadcast((float32*)A_2[(((m.outer*32768) + (m.c*1024)) + (k.outer*4))], 32)*(float32x32*)packedB[ramp(((n.outer*32768) + (k.outer*128)), 1, 32)]))
            C.global[ramp((m.c*32), 1, 32)] = ((float32x32*)C.global[ramp((m.c*32), 1, 32)] + (broadcast((float32*)A_2[((((m.outer*32768) + (m.c*1024)) + (k.outer*4)) + 1)], 32)*(float32x32*)packedB[ramp((((n.outer*32768) + (k.outer*128)) + 32), 1, 32)]))
            C.global[ramp((m.c*32), 1, 32)] = ((float32x32*)C.global[ramp((m.c*32), 1, 32)] + (broadcast((float32*)A_2[((((m.outer*32768) + (m.c*1024)) + (k.outer*4)) + 2)], 32)*(float32x32*)packedB[ramp((((n.outer*32768) + (k.outer*128)) + 64), 1, 32)]))
            C.global[ramp((m.c*32), 1, 32)] = ((float32x32*)C.global[ramp((m.c*32), 1, 32)] + (broadcast((float32*)A_2[((((m.outer*32768) + (m.c*1024)) + (k.outer*4)) + 3)], 32)*(float32x32*)packedB[ramp((((n.outer*32768) + (k.outer*128)) + 96), 1, 32)]))
          }
        }
        for (m.inner: int32, 0, 32) {
          for (n.inner: int32, 0, 32) {
            C_2[((((m.outer*32768) + (m.inner*1024)) + (n.outer*32)) + n.inner)] = (float32*)C.global[((m.inner*32) + n.inner)]
          }
        }
      }
    }
  }
}

總結

僅用 18 行代碼,應用上述簡單優化后,生成的代碼,可以使用 MKL實現numpy性能的60% 。輸出反映了非排他性 Docker 容器上的運行時間,是不可靠的。強烈建議自己運行,觀察 TVM 實現的性能提升。

 

參考鏈接:

https://tvm.apache.org/docs/tutorials/optimize/opt_gemm.html

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM