以下基於
python3.8;airtest1.2.2;pocoui1.0.83
之前講了圖像識別的基礎——Template類:Airtest-API精講之Template
這次我們看下Airtest圖像識別的整體流程。
我們以touch()接口為例,AirtestIDE中touch怎么用可以看:AirtestIDE基本功能(一)
進入查看touch源碼
# 源碼路徑 your_python_path/site-packages/airtest/core/api.py
def touch(v, times=1, **kwargs):
"""
Perform the touch action on the device screen
:param v: target to touch, either a ``Template`` instance or absolute coordinates (x, y)
:param times: how many touches to be performed
:param kwargs: platform specific `kwargs`, please refer to corresponding docs
:return: finial position to be clicked, e.g. (100, 100)
"""
if isinstance(v, Template):
pos = loop_find(v, timeout=ST.FIND_TIMEOUT)
else:
try_log_screen()
pos = v
for _ in range(times):
G.DEVICE.touch(pos, **kwargs)
time.sleep(0.05)
delay_after_operation()
return pos
touch是兼容傳入圖片或坐標的,我們只看圖片的邏輯。
pos = loop_find(v, timeout=ST.FIND_TIMEOUT)
可以看到是通過loop_find去循環找圖,超時時間ST.FIND_TIMEOUT
默認是20S,這里找到圖片的話會返回坐標,后面的代碼會去點擊這個坐標,就完成了touch操作。
繼續進入loop_find源碼:
# 源碼路徑 your_python_path/site-packages/airtest/core/cv.py
def loop_find(query, timeout=ST.FIND_TIMEOUT, threshold=None, interval=0.5, intervalfunc=None):
G.LOGGING.info("Try finding: %s", query)
start_time = time.time()
while True:
screen = G.DEVICE.snapshot(filename=None, quality=ST.SNAPSHOT_QUALITY)
if screen is None:
G.LOGGING.warning("Screen is None, may be locked")
else:
if threshold:
query.threshold = threshold
match_pos = query.match_in(screen)
if match_pos:
try_log_screen(screen)
return match_pos
if intervalfunc is not None:
intervalfunc()
# 超時則raise,未超時則進行下次循環:
if (time.time() - start_time) > timeout:
try_log_screen(screen)
raise TargetNotFoundError('Picture %s not found in screen' % query)
else:
time.sleep(interval)
loop_find整體邏輯就是循環去屏幕截圖上找圖,找到返回其坐標,超時未找到報錯。第1個參數query就是我們前面傳入的Template類實例(我們截的圖)
其中關鍵是match_pos = query.match_in(screen)
,前一步給手機截圖賦值給screen
,然后在截圖中查找給定圖片,用的方法是Template類中的match_in方法。
繼續看match_in源碼:
# 源碼路徑 your_python_path/site-packages/airtest/core/cv.py
def match_in(self, screen):
match_result = self._cv_match(screen)
G.LOGGING.debug("match result: %s", match_result)
if not match_result:
return None
focus_pos = TargetPos().getXY(match_result, self.target_pos)
return focus_pos
其中核心代碼是match_result = self._cv_match(screen)
圖像匹配
如果找到后面代碼會返回9宮點中我們要求的坐標:
focus_pos = TargetPos().getXY(match_result, self.target_pos)
還得記得9宮點嗎?就是Template實例化時我們指定的target_pos,忘了可以看這篇Airtest-API精講之Template中的target_pos
繼續看_cv_match源碼:
# 源碼路徑 your_python_path/site-packages/airtest/core/cv.py
def _cv_match(self, screen):
# in case image file not exist in current directory:
ori_image = self._imread()
image = self._resize_image(ori_image, screen, ST.RESIZE_METHOD)
ret = None
for method in ST.CVSTRATEGY:
# get function definition and execute:
func = MATCHING_METHODS.get(method, None)
if func is None:
raise InvalidMatchingMethodError("Undefined method in CVSTRATEGY: '%s', try 'kaze'/'brisk'/'akaze'/'orb'/'surf'/'sift'/'brief' instead." % method)
else:
if method in ["mstpl", "gmstpl"]:
ret = self._try_match(func, ori_image, screen, threshold=self.threshold, rgb=self.rgb, record_pos=self.record_pos,resolution=self.resolution, scale_max=self.scale_max, scale_step=self.scale_step)
else:
ret = self._try_match(func, image, screen, threshold=self.threshold, rgb=self.rgb)
if ret:
break
return ret
其中ori_image = self._imread()
讀取圖像
image = self._resize_image(ori_image, screen, ST.RESIZE_METHOD)
根據分辨率,將輸入的截圖適配成 等待模板匹配的截圖
之后會循環各種算法去匹配圖片,默認算法為ST.CVSTRATEGY = ["mstpl", "tpl", "surf", "brisk"]
循環中用到的匹配方法為_try_match
繼續看_try_match源碼:
# 源碼路徑 your_python_path/site-packages/airtest/core/cv.py
def _try_match(func, *args, **kwargs):
G.LOGGING.debug("try match with %s" % func.__name__)
try:
ret = func(*args, **kwargs).find_best_result()
except aircv.NoModuleError as err:
G.LOGGING.warning("'surf'/'sift'/'brief' is in opencv-contrib module. You can use 'tpl'/'kaze'/'brisk'/'akaze'/'orb' in CVSTRATEGY, or reinstall opencv with the contrib module.")
return None
except aircv.BaseError as err:
G.LOGGING.debug(repr(err))
return None
else:
return ret
其核心代碼為ret = func(*args, **kwargs).find_best_result()
不同的算法對應不同的find_best_result()
方法,目前一共有4種,我們以TemplateMatching類中的為例看一下
# 源碼路徑 your_python_path/site-packages/airtest/aircv/template_matching.py
def find_best_result(self):
"""基於kaze進行圖像識別,只篩選出最優區域."""
"""函數功能:找到最優結果."""
# 第一步:校驗圖像輸入
check_source_larger_than_search(self.im_source, self.im_search)
# 第二步:計算模板匹配的結果矩陣res
res = self._get_template_result_matrix()
# 第三步:依次獲取匹配結果
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
h, w = self.im_search.shape[:2]
# 求取可信度:
confidence = self._get_confidence_from_matrix(max_loc, max_val, w, h)
# 求取識別位置: 目標中心 + 目標區域:
middle_point, rectangle = self._get_target_rectangle(max_loc, w, h)
best_match = generate_result(middle_point, rectangle, confidence)
LOGGING.debug("[%s] threshold=%s, result=%s" % (self.METHOD_NAME, self.threshold, best_match))
return best_match if confidence >= self.threshold else None
到這里就是基於cv2庫去找圖了,步驟注釋寫的很清楚了。對opencv感興趣的同學,可以到這里學一學http://www.woshicver.com/