DETR 模型結構源碼
End-to-End Object Detection with Transformers(DETR)
論文地址:https://arxiv.org/abs/2005.12872
源代碼位置: https://github.com/facebookresearch/detr
參考文獻: https://www.cnblogs.com/Glucklichste/p/14057005.html
模型整體結構

論文中模型結構
主干網絡
- backbone(CNN-Resnet)
- CNN網絡
- positional(位置信息)
- transformer
- encoder
- decoder
- predicttion head
模型構建
models/detr.py
# 構建兩大模型
# backbone = build_backbone(args)
# transformer = build_transformer(args)
# 模型連接 DETR
#
def build(args):
num_classes = 20 if args.dataset_file != 'coco' else 91
if args.dataset_file == "coco_panoptic":
# for panoptic, we just add a num_classes that is large enough to hold
# max_obj_id + 1, but the exact value doesn't really matter
num_classes = 250
device = torch.device(args.device)
# 包含兩大部分, 構建 backbone 和 構建 transformer
backbone = build_backbone(args)
transformer = build_transformer(args)
model = DETR(
backbone,
transformer,
num_classes=num_classes,
num_queries=args.num_queries,
aux_loss=args.aux_loss,
)
if args.masks:
model = DETRsegm(model, freeze_detr=(args.frozen_weights is not None))
backbone
cnn骨架特征提取
backbone的輸入和輸出
- input shape=(N,3,W,H)
- output shape=(N,2048,W/32,H/32) #針對 Resnet50 C=2048, 針對 Resnet18,Resnet34 C=512
假設輸入是(N,C,H,W),則resnet50輸出是(N,2048,H//32,W//32),1024比較大,
為了節省計算量,先采用1x1卷積降維為256,(hidden_dim=256,在main.py 中設置參數)
最后轉化為序列格式輸入到transformer中,輸入shape=(H*W,N,256),H=H/32,W=W/32
class Backbone(BackboneBase):
"""ResNet backbone with frozen BatchNorm."""
def __init__(self, name: str,
train_backbone: bool,
return_interm_layers: bool,
dilation: bool):
backbone = getattr(torchvision.models, name)(
replace_stride_with_dilation=[False, False, dilation],
pretrained=is_main_process(), norm_layer=FrozenBatchNorm2d)
# 針對不同的網絡,選擇了不同的輸出大小
num_channels = 512 if name in ('resnet18', 'resnet34') else 2048
super().__init__(backbone, train_backbone, num_channels, return_interm_layers)
···
```python
在 DETR 類中
src 為 backone 的輸出 shape=(N,512,W/32,H/32)
# self.input_proj(src) 將 shape=(N,512,W/32,H/32) -> shape=(N,256,W/32,H/32)
hs = self.transformer(self.input_proj(src), mask, self.query_embed.weight, pos[-1])[0]
位置信息標注,包含了x,y兩個方向的位置信息。編碼方式任然采用sincos, 語音序列只是包含了一個方向的位置信息
PositionEmbeddingSine.forward的輸入和輸出
- input NestedTensor型數據 tensor_list的類型是NestedTensor,內部自動附加了mask,
- x.tensors.shape=((N, 512,W/32, H/32) x.mask.shape=(N,W/32,H/32)
- output: pos.shape=(N, 256, W/32,H/32)
class PositionEmbeddingSine(nn.Module):
"""
This is a more standard version of the position embedding, very similar to the one
used by the Attention is all you need paper, generalized to work on images.
"""
def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None):
super().__init__()
self.num_pos_feats = num_pos_feats
self.temperature = temperature
self.normalize = normalize
if scale is not None and normalize is False:
raise ValueError("normalize should be True if scale is passed")
if scale is None:
scale = 2 * math.pi
self.scale = scale
def forward(self, tensor_list: NestedTensor):
x = tensor_list.tensors
mask = tensor_list.mask
#x.tensors.shape=((N, 512,W/32, H/32) x.mask.shape=(N,W/32,H/32)
assert mask is not None
not_mask = ~mask
y_embed = not_mask.cumsum(1, dtype=torch.float32)
x_embed = not_mask.cumsum(2, dtype=torch.float32)
if self.normalize:
eps = 1e-6
y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
# 前面輸入向量是256,編碼是一半sin,一半cos
dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
pos_x = x_embed[:, :, :, None] / dim_t
pos_y = y_embed[:, :, :, None] / dim_t
pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3)
pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3)
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
# pos.shape=(N, 256, W/32,H/32) 前128是y方向編碼,而128是x方向編碼
return pos
transformer

transformer整體構建
model/transformer.py
Transformer 模型構建
包含 encoder decoder
class Transformer(nn.Module):
def __init__(self, d_model=512, nhead=8, num_encoder_layers=6,
num_decoder_layers=6, dim_feedforward=2048, dropout=0.1,
activation="relu", normalize_before=False,
return_intermediate_dec=False):
super().__init__()
# 編碼
encoder_layer = TransformerEncoderLayer(d_model, nhead, dim_feedforward,
dropout, activation, normalize_before)
encoder_norm = nn.LayerNorm(d_model) if normalize_before else None
self.encoder = TransformerEncoder(encoder_layer, num_encoder_layers, encoder_norm)
# 解碼
decoder_layer = TransformerDecoderLayer(d_model, nhead, dim_feedforward,
dropout, activation, normalize_before)
decoder_norm = nn.LayerNorm(d_model)
self.decoder = TransformerDecoder(decoder_layer, num_decoder_layers, decoder_norm,
return_intermediate=return_intermediate_dec)
self._reset_parameters()
self.d_model = d_model
self.nhead = nhead
def _reset_parameters(self):
for p in self.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
def forward(self, src, mask, query_embed, pos_embed):
# flatten NxCxHxW to HWxNxC
# inputs: {src,mask,query_embed,pos} 由 DETR.forward 獲取來自 backbone
bs, c, h, w = src.shape
# 先對數據做變換
# 特殊說明 這里是經過backbone 輸出的特征 (N,256,W/32,H/32) 之后transformer過程中 輸出shape為(H/32xW/32,N,256) 特征的寬和高沒有變化,為了書寫方法方便,我這里將 W/32,H/32 寫成為 W,H
# src=(N,256,W/32,H/32)-> (WH,N,256)
# pos_embed=(N,256,W,H)-> (WH,N,256)
# query_embed=(100,256) -> (100,N,256)
# mask=(N,W,H) -> (N,WH)
src = src.flatten(2).permute(2, 0, 1)
pos_embed = pos_embed.flatten(2).permute(2, 0, 1)
query_embed = query_embed.unsqueeze(1).repeat(1, bs, 1)
mask = mask.flatten(1)
# 解碼 第一層 首次參數設置為0,后續自動更新
tgt = torch.zeros_like(query_embed)
# encoder src=(WH,N,256) mask= (N,WH) pos_embed= (WH,N,256)
# 輸出 (WH,N,256)
memory = self.encoder(src, src_key_padding_mask=mask, pos=pos_embed)
# decoder tgt=(100,N,256) memory=(WH,N,256),mask=(N,WH)
# pos_embed=(WH,N,256) query_embed=(100,N,256)
# 輸出 hs=(decoder_layers, 100, N, 256)
hs = self.decoder(tgt, memory, memory_key_padding_mask=mask,
pos=pos_embed, query_pos=query_embed)
# return (decoder_layers, N, 100, 256) (N, 256, H, W])
return hs.transpose(1, 2), memory.permute(1, 2, 0).view(bs, c, h, w)
Encoder
編碼器結構和輸入輸出
編碼器的輸入有三個 src=(WH,N,256) src_mask= (N,WH) pos_embed= (WH,N,256) 注釋:W=W/32,H=H/32
- 由圖像生成的序列,shape=(WH,N,256)
- 掩碼信息,shape= (N,WH)
- 圖像序列的空間位置信息,shape=(WH,N,256)
經過6層編碼后 輸出只有一個 序列,shape和輸入的src 序列保持一直,shape=(WH,N,256) 注釋:W=W/32,H=H/32
模型細節
- 原始transformer的n個編碼器輸入中,只有第一個編碼器需要輸入位置編碼向量,但是DETR里面對每個編碼器都輸入了同一個位置編碼向量
- QKV處理邏輯不同,在編碼器內部位置編碼僅僅和 Q K 相加,V 不做任何處理
TransformerEncoder類
def _get_clones(module, N):
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
class TransformerEncoder(nn.Module):
def __init__(self, encoder_layer, num_layers, norm=None):
super().__init__()
self.layers = _get_clones(encoder_layer, num_layers)
self.num_layers = num_layers
self.norm = norm
def forward(self, src,
mask: Optional[Tensor] = None,
src_key_padding_mask: Optional[Tensor] = None,
pos: Optional[Tensor] = None):
output = src
# 默認設置了 6個 編碼器,循環6遍
# encoder input src=(WH,N,256) src_mask= (N,WH) pos_embed= (WH,N,256)
# output -> output (WH,N,256)
# 包含了多層相同的結構,首尾相連,上一層輸出為下一層的輸入
for layer in self.layers:
output = layer(output, src_mask=mask,
src_key_padding_mask=src_key_padding_mask, pos=pos)
if self.norm is not None:
output = self.norm(output)
return output
TransformerEncoderLayer類
class TransformerEncoderLayer(nn.Module):
def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1,
activation="relu", normalize_before=False):
super().__init__()
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
# Implementation of Feedforward model
self.linear1 = nn.Linear(d_model, dim_feedforward)
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_feedforward, d_model)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.activation = _get_activation_fn(activation)
self.normalize_before = normalize_before
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
return tensor if pos is None else tensor + pos
def forward_post(self,
src,
src_mask: Optional[Tensor] = None,
src_key_padding_mask: Optional[Tensor] = None,
pos: Optional[Tensor] = None):
# src=(WH,N,256) mask= (N,WH) pos_embed= (WH,N,256)
# with_pos_embed 輸入是 src pos {圖片序列,位置信息}
# 對 Q K 進行更新
q = k = self.with_pos_embed(src, pos)
# MultiheadAttention 多頭注意力機制
# 在編碼器內部位置編碼僅僅和QK相加,V不做任何處理
src2 = self.self_attn(q, k, value=src, attn_mask=src_mask,
key_padding_mask=src_key_padding_mask)[0]
# 殘差
src = src + self.dropout1(src2)
src = self.norm1(src)
# FFN
src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
src = src + self.dropout2(src2)
src = self.norm2(src)
return src
def forward_pre(self, src,
src_mask: Optional[Tensor] = None,
src_key_padding_mask: Optional[Tensor] = None,
pos: Optional[Tensor] = None):
src2 = self.norm1(src)
q = k = self.with_pos_embed(src2, pos)
src2 = self.self_attn(q, k, value=src2, attn_mask=src_mask,
key_padding_mask=src_key_padding_mask)[0]
src = src + self.dropout1(src2)
src2 = self.norm2(src)
src2 = self.linear2(self.dropout(self.activation(self.linear1(src2))))
src = src + self.dropout2(src2)
return src
def forward(self, src,
src_mask: Optional[Tensor] = None,
src_key_padding_mask: Optional[Tensor] = None,
pos: Optional[Tensor] = None):
# encoder src=(WH,N,256) mask= (N,WH) pos_embed= (WH,N,256)
# output=(WH,N,256)
# 默認 normalize_before=False 只對 forward_post 函數注解
if self.normalize_before:
return self.forward_pre(src, src_mask, src_key_padding_mask, pos)
return self.forward_post(src, src_mask, src_key_padding_mask, pos)
Decoder
解碼器結構和輸入輸出
輸入參數
解碼器的輸入 有五個參數 decoder tgt=(100,N,256) memory=(WH,N,256),mask=(N,WH) pos_embed=(WH,N,256) query_pos=(100,N,256)
- tgt 可以理解為上一層解碼器的解碼輸出 shape=(100,N,256) 第一層的tgt=torch.zeros_like(query_embed) 為零矩陣
- memory 最后一個編碼器輸出 shape=(WH,N,256)
- mask 掩碼信息 shape=(N,WH)
- pos 和編碼器輸入中完全相同位置參數 shape=(WH,N,256)
- query_pos 是可學習輸出位置向量, 個人理解 解碼器中的這個參數 全局共享 提供全局注意力 query_pos=(100,N,256)
輸出參數
- 輸出 (decoder_layers, 100, N, 256) decoder_layers 為解碼器的數量(層數),原文默認設置為6層
原始transformer順序解碼操作不同的是,detr一次就把N個無序框並行輸出
Obeject Query
針對 query_pos 參數的其他博客解釋
論文中指出object queries作用非常類似faster rcnn中的anchor,只不過這里是可學習的,不是提前設置好的。
object queries(shape是(100,256)) 源代碼中,這是一個torch.nn.Embedding的對象。
官方介紹:一個保存了固定字典和大小的簡單查找表。這個模塊常用來保存詞嵌入和用下標檢索它們。模塊的輸入是一個下標的列表,輸出是對應的詞嵌入。
個人理解:query_pos 可以簡單認為是輸出位置編碼,其作用主要是在學習過程中提供目標對象和全局圖像之間的關系,相當於全局注意力,必不可少非常關鍵。代碼形式上是可學習位置編碼矩陣。和編碼器一樣,該可學習位置編碼向量也會輸入到每一個解碼器中。我們可以嘗試通俗理解:object queries矩陣內部通過學習建模了100個物體之間的全局關系,並且參與到網絡的學習當中。
其他細節:
- tgt(第一次輸入是query embeding,第二次是上一層的輸出out);
- 和編碼器一樣,只是Q 與 K加上了位置編碼信息, V不會加入位置編碼
- 引入可學習的Object queries
- 不需要順序解碼,一次即可輸出N個無序集合
TransformerDecoder類
class TransformerDecoder(nn.Module):
def __init__(self, decoder_layer, num_layers, norm=None, return_intermediate=False):
super().__init__()
self.layers = _get_clones(decoder_layer, num_layers)
self.num_layers = num_layers
self.norm = norm
self.return_intermediate = return_intermediate
def forward(self, tgt, memory,
tgt_mask: Optional[Tensor] = None,
memory_mask: Optional[Tensor] = None,
tgt_key_padding_mask: Optional[Tensor] = None,
memory_key_padding_mask: Optional[Tensor] = None,
pos: Optional[Tensor] = None,
query_pos: Optional[Tensor] = None):
# decoder tgt=(100,N,256) memory=(WH,N,256),mask=(N,WH) pos_embed=(WH,N,256) query_embed=(100,N,256)
output = tgt
intermediate = []
for layer in self.layers:
output = layer(output, memory, tgt_mask=tgt_mask,
memory_mask=memory_mask,
tgt_key_padding_mask=tgt_key_padding_mask,
memory_key_padding_mask=memory_key_padding_mask,
pos=pos, query_pos=query_pos)
if self.return_intermediate:
intermediate.append(self.norm(output))
if self.norm is not None:
output = self.norm(output)
if self.return_intermediate:
intermediate.pop()
intermediate.append(output)
# intermediate=[outpout...] intermediate[0].shape=(100,N,256)
# return_intermediate = True
if self.return_intermediate:
return torch.stack(intermediate)
return output.unsqueeze(0)
TransformerDecoderLayer類
class TransformerDecoderLayer(nn.Module):
def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1,
activation="relu", normalize_before=False):
super().__init__()
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
# Implementation of Feedforward model
self.linear1 = nn.Linear(d_model, dim_feedforward)
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_feedforward, d_model)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.norm3 = nn.LayerNorm(d_model)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.dropout3 = nn.Dropout(dropout)
self.activation = _get_activation_fn(activation)
self.normalize_before = normalize_before
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
return tensor if pos is None else tensor + pos
def forward_post(self, tgt, memory,
tgt_mask: Optional[Tensor] = None,
memory_mask: Optional[Tensor] = None,
tgt_key_padding_mask: Optional[Tensor] = None,
memory_key_padding_mask: Optional[Tensor] = None,
pos: Optional[Tensor] = None,
query_pos: Optional[Tensor] = None):
# # decoder tgt=(100,N,256) memory=(WH,N,256),mask=(N,WH) pos_embed=(WH,N,256) query_embed=(100,N,256)
# 解碼 第一次注意力機制 tgt=(100,N,256) 是 上一個單元輸出 如果是第一次 torch.zeros_like(query_embed)
# query_embed=(100,N,256) query_pos 應該是共享單元,不管多少層都是公用一組數據
q = k = self.with_pos_embed(tgt, query_pos)
tgt2 = self.self_attn(q, k, value=tgt, attn_mask=tgt_mask,
key_padding_mask=tgt_key_padding_mask)[0]
tgt = tgt + self.dropout1(tgt2)
tgt = self.norm1(tgt)
# multihead_attn
# query=self.with_pos_embed(tgt, query_pos) 在第二次注意力機制中 對 Q 進行更新
# key=self.with_pos_embed(memory, pos) 在第二次注意力機制中對 K 進行更新
tgt2 = self.multihead_attn(query=self.with_pos_embed(tgt, query_pos),
key=self.with_pos_embed(memory, pos),
value=memory, attn_mask=memory_mask,
key_padding_mask=memory_key_padding_mask)[0]
tgt = tgt + self.dropout2(tgt2)
tgt = self.norm2(tgt)
# FFN
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
tgt = tgt + self.dropout3(tgt2)
tgt = self.norm3(tgt)
return tgt
def forward_pre(self, tgt, memory,
tgt_mask: Optional[Tensor] = None,
memory_mask: Optional[Tensor] = None,
tgt_key_padding_mask: Optional[Tensor] = None,
memory_key_padding_mask: Optional[Tensor] = None,
pos: Optional[Tensor] = None,
query_pos: Optional[Tensor] = None):
# # decoder tgt=(100,N,256) memory=(WH,N,256),mask=(N,WH) pos_embed=(WH,N,256) query_embed=(100,N,256)
tgt2 = self.norm1(tgt)
q = k = self.with_pos_embed(tgt2, query_pos)
tgt2 = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask,
key_padding_mask=tgt_key_padding_mask)[0]
tgt = tgt + self.dropout1(tgt2)
tgt2 = self.norm2(tgt)
tgt2 = self.multihead_attn(query=self.with_pos_embed(tgt2, query_pos),
key=self.with_pos_embed(memory, pos),
value=memory, attn_mask=memory_mask,
key_padding_mask=memory_key_padding_mask)[0]
tgt = tgt + self.dropout2(tgt2)
tgt2 = self.norm3(tgt)
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
tgt = tgt + self.dropout3(tgt2)
return tgt
def forward(self, tgt, memory,
tgt_mask: Optional[Tensor] = None,
memory_mask: Optional[Tensor] = None,
tgt_key_padding_mask: Optional[Tensor] = None,
memory_key_padding_mask: Optional[Tensor] = None,
pos: Optional[Tensor] = None,
query_pos: Optional[Tensor] = None):
# decoder input tgt=(100,N,256) memory=(WH,N,256),mask=(N,WH) pos_embed=(WH,N,256) query_embed=(100,N,256)
# ISFalse
if self.normalize_before:
return self.forward_pre(tgt, memory, tgt_mask, memory_mask,
tgt_key_padding_mask, memory_key_padding_mask, pos, query_pos)
return self.forward_post(tgt, memory, tgt_mask, memory_mask,
tgt_key_padding_mask, memory_key_padding_mask, pos, query_pos)
FFN
最后是接了一個FFN,就是兩個全連接層,一個用於分類,一個用於回歸預測
分類: 一層模型結構
最終預測 MLP模型 是由具有ReLU激活功能且具有隱藏層的3層感知器和線性層計算的。 FFN預測框的標准化中心坐標,高度和寬度, 輸入圖像,然后線性層使用softmax函數預測類標簽
DETR類中
# 輸入 hs.shape = (decoder_layers, N, 100, 256)
# 分類 self.class_embed = nn.Linear(hidden_dim, num_classes + 1)
# FFN Linear class input=(decoder_layers, N, 100, 256) output=(decoder_layers, N, 100, num_classes+1)
outputs_class = self.class_embed(hs)
# 預測 self.bbox_embed = MLP(hidden_dim, hidden_dim, 4, 3)
# MLP Bounding box input=(decoder_layers, N, 100, 256) output=(decoder_layers, N, 100, 4)
outputs_coord = self.bbox_embed(hs).sigmoid()
