python中將nii窗寬窗位歸一化,並轉為jpg


import numpy as np
import os # 遍歷文件夾
import nibabel as nib # nii格式一般都會用到這個包
import imageio # 轉換成圖像

center = 500 # 肺部的窗寬窗位
width = 1000
# print(center)
# print(width)


def nii_to_image(filepath):
filenames = os.listdir(filepath) # 讀取nii文件夾

for f in filenames:
# 開始讀取nii文件
img_path = os.path.join(filepath, f)

img = nib.load(img_path) # 讀取nii
img_fdata = img.get_fdata() # api 已完成轉換,讀出來的即為CT值
fname = f.replace('.nii.gz', '') # 去掉nii的后綴名
img_f_path = os.path.join(imgfile, fname)
# print(img_f_path)
# 創建nii對應的圖像的文件夾
if not os.path.exists(img_f_path):
os.mkdir(img_f_path) # 新建文件夾

# 轉換成窗寬窗位
min = (2 * center - width) / 2.0 + 0.5
max = (2 * center + width) / 2.0 + 0.5
dFactor = 255.0 / (max - min)
# print(dFactor)
# #
# # # 開始轉換為圖像
(x, y, z) = img.shape
# print("xyz",x,y,z)
for i in range(z): # z是圖像的序列
silce = img_fdata[:, :, i] # 選擇哪個方向的切片都可以
# rawData_win = np.zeros(rawData.shape, dtype='float32')

silce = silce - min
silce = np.trunc(silce * dFactor)
silce[silce < 0.0] = 0
silce[silce > 255.0] = 255 # 轉換為窗位窗位之后的數據

imageio.imwrite(os.path.join(img_f_path, '{}.jpg'.format(i)), silce)


if __name__ == '__main__':
filepath = 'D:\good good study\data analyse\cervical cancer_deeplearning\\bilibili_LEO\preprocessing\T2_test'
imgfile='D:\good good study\data analyse\cervical cancer_deeplearning\\bilibili_LEO\preprocessing\T2_test_png'
nii_to_image(filepath)


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM