無論是激光、視覺或者是慣導直接推出來的里程計通常會有回環誤差,通過圖優化的方式能夠將回環誤差最小化,從而提高建圖精度。
圖優化也是一種優化,所以能用常見的非線性優化方法來做,這里用到的高斯牛頓法,和之前ndt那一篇類似。
1.定義誤差函數:
我們定義Xi為i點位姿,Xj為j點位姿,Rij與Tij為回環模塊找到的一條i點到j點的位姿轉換。
誤差函數定義如下:
2.計算e對xi和xj的偏導,得到相應的雅克比矩陣:
3.對H矩陣和b向量進行迭代更新:
對H更新:
其中omiga是信息矩陣,我這里用的單位陣。
對b更新:
4.計算位姿變化增量deltax:
5.迭代到一定次數或者小於一定閾值退出即可。
網上能找的到基於matlab圖優化版本在下面這個鏈接,我的測試數據也來自該工程:
https://github.com/versatran01/graphslam
我按照原理公式又重寫了一遍,結合下面代碼和上面公式一起理解應該會比較清晰。
matlab代碼如下:
clear all; close all; clc; efile = 'killian-e.dat'; vfile = 'killian-v.dat'; ef = fopen(efile); vf = fopen(vfile); vertices = fscanf(vf, 'VERTEX2 %d %f %f %f\n', [4,Inf]); edges = fscanf(ef,'EDGE2 %d %d %f %f %f %f %f %f %f %f %f \n',[11,Inf]); vmeans = vertices(2:4, vertices(1,:)+1)'; eids = (edges(1:2,:) + 1)'; emeans = edges(3:5,:)'; plot(vmeans(:,1),vmeans(:,2)); axis equal; for k=1:5 H = zeros(length(vmeans)*3); b = zeros(length(vmeans)*3,1); for i=1:length(eids) id_i = eids(i,1); id_j = eids(i,2); vi = vmeans(id_i,:); vj = vmeans(id_j,:); eij = emeans(i,:); ti = vi(1:2)'; tj = vj(1:2)'; tij = eij(1:2)'; Ri = [cos(vi(3)) -sin(vi(3));sin(vi(3)) cos(vi(3))]; Rj = [cos(vj(3)) -sin(vj(3));sin(vj(3)) cos(vj(3))]; Rij = [cos(eij(3)) -sin(eij(3));sin(eij(3)) cos(eij(3))]; err_ij = [Rij'*(Ri'*(tj-ti)-tij);tan(vj(3) - vi(3) - eij(3))]; dRi = [-sin(vi(3)) -cos(vi(3));cos(vi(3)) -sin(vi(3))]; A = [-Rij'*Ri' Rij'*dRi'*(tj-ti);zeros(1,2) -1]; B = [Rij'*Ri' zeros(2,1);zeros(1,2) 1]; H_ii = A'*A; H_ij = A'*B; H_ji = B'*A; H_jj = B'*B; bi = err_ij'*A; bj = err_ij'*B; H((id_i-1)*3+1:id_i*3,(id_i-1)*3+1:id_i*3) = H((id_i-1)*3+1:id_i*3,(id_i-1)*3+1:id_i*3) + H_ii; H((id_j-1)*3+1:id_j*3,(id_j-1)*3+1:id_j*3) = H((id_j-1)*3+1:id_j*3,(id_j-1)*3+1:id_j*3) + H_jj; H((id_i-1)*3+1:id_i*3,(id_j-1)*3+1:id_j*3) = H((id_i-1)*3+1:id_i*3,(id_j-1)*3+1:id_j*3) + H_ij; H((id_j-1)*3+1:id_j*3,(id_i-1)*3+1:id_i*3) = H((id_j-1)*3+1:id_j*3,(id_i-1)*3+1:id_i*3) + H_ji; b((id_i-1)*3+1:id_i*3,1) = b((id_i-1)*3+1:id_i*3,1) + bi'; b((id_j-1)*3+1:id_j*3,1) = b((id_j-1)*3+1:id_j*3,1) + bj'; end H(1:3,1:3) = H(1:3,1:3) + eye(3); SH = sparse(H); deltax = -SH\b; newmeans = vmeans + reshape(deltax,3,length(vmeans))'; vmeans = newmeans; end figure; plot(vmeans(:,1),vmeans(:,2)) axis equal;
結果如下:
優化前:
優化后:
測試數據下載地址:https://files.cnblogs.com/files/tiandsp/killian.zip