
內容來源於官方 Longhorn 1.1.2 英文技術手冊。
系列
- Longhorn 是什么?
- Longhorn 企業級雲原生容器分布式存儲解決方案設計架構和概念
- Longhorn 企業級雲原生容器分布式存儲-部署篇
- Longhorn 企業級雲原生容器分布式存儲-券(Volume)和節點(Node)
- Longhorn,企業級雲原生容器分布式存儲-K8S 資源配置示例
目錄
- 設置
Prometheus和Grafana來監控Longhorn - 將
Longhorn指標集成到Rancher監控系統中 Longhorn監控指標- 支持
Kubelet Volume指標 Longhorn警報規則示例
設置 Prometheus 和 Grafana 來監控 Longhorn
概覽
Longhorn 在 REST 端點 http://LONGHORN_MANAGER_IP:PORT/metrics 上以 Prometheus 文本格式原生公開指標。
有關所有可用指標的說明,請參閱 Longhorn's metrics。
您可以使用 Prometheus, Graphite, Telegraf 等任何收集工具來抓取這些指標,然后通過 Grafana 等工具將收集到的數據可視化。
本文檔提供了一個監控 Longhorn 的示例設置。監控系統使用 Prometheus 收集數據和警報,使用 Grafana 將收集的數據可視化/儀表板(visualizing/dashboarding)。 高級概述來看,監控系統包含:
Prometheus服務器從Longhorn指標端點抓取和存儲時間序列數據。Prometheus還負責根據配置的規則和收集的數據生成警報。Prometheus服務器然后將警報發送到Alertmanager。AlertManager然后管理這些警報(alerts),包括靜默(silencing)、抑制(inhibition)、聚合(aggregation)和通過電子郵件、呼叫通知系統和聊天平台等方法發送通知。Grafana向Prometheus服務器查詢數據並繪制儀表板進行可視化。
下圖描述了監控系統的詳細架構。

上圖中有 2 個未提及的組件:
- Longhorn 后端服務是指向
Longhorn manager pods集的服務。Longhorn的指標在端點http://LONGHORN_MANAGER_IP:PORT/metrics的Longhorn manager pods中公開。 - Prometheus operator 使在
Kubernetes上運行Prometheus變得非常容易。operator監視3個自定義資源:ServiceMonitor、Prometheus和AlertManager。當用戶創建這些自定義資源時,Prometheus Operator會使用用戶指定的配置部署和管理Prometheus server,AlerManager。
安裝
按照此說明將所有組件安裝到 monitoring 命名空間中。要將它們安裝到不同的命名空間中,請更改字段 namespace: OTHER_NAMESPACE
創建 monitoring 命名空間
apiVersion: v1
kind: Namespace
metadata:
name: monitoring
安裝 Prometheus Operator
部署 Prometheus Operator 及其所需的 ClusterRole、ClusterRoleBinding 和 Service Account。
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
labels:
app.kubernetes.io/component: controller
app.kubernetes.io/name: prometheus-operator
app.kubernetes.io/version: v0.38.3
name: prometheus-operator
namespace: monitoring
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: prometheus-operator
subjects:
- kind: ServiceAccount
name: prometheus-operator
namespace: monitoring
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
labels:
app.kubernetes.io/component: controller
app.kubernetes.io/name: prometheus-operator
app.kubernetes.io/version: v0.38.3
name: prometheus-operator
namespace: monitoring
rules:
- apiGroups:
- apiextensions.k8s.io
resources:
- customresourcedefinitions
verbs:
- create
- apiGroups:
- apiextensions.k8s.io
resourceNames:
- alertmanagers.monitoring.coreos.com
- podmonitors.monitoring.coreos.com
- prometheuses.monitoring.coreos.com
- prometheusrules.monitoring.coreos.com
- servicemonitors.monitoring.coreos.com
- thanosrulers.monitoring.coreos.com
resources:
- customresourcedefinitions
verbs:
- get
- update
- apiGroups:
- monitoring.coreos.com
resources:
- alertmanagers
- alertmanagers/finalizers
- prometheuses
- prometheuses/finalizers
- thanosrulers
- thanosrulers/finalizers
- servicemonitors
- podmonitors
- prometheusrules
verbs:
- '*'
- apiGroups:
- apps
resources:
- statefulsets
verbs:
- '*'
- apiGroups:
- ""
resources:
- configmaps
- secrets
verbs:
- '*'
- apiGroups:
- ""
resources:
- pods
verbs:
- list
- delete
- apiGroups:
- ""
resources:
- services
- services/finalizers
- endpoints
verbs:
- get
- create
- update
- delete
- apiGroups:
- ""
resources:
- nodes
verbs:
- list
- watch
- apiGroups:
- ""
resources:
- namespaces
verbs:
- get
- list
- watch
---
apiVersion: apps/v1
kind: Deployment
metadata:
labels:
app.kubernetes.io/component: controller
app.kubernetes.io/name: prometheus-operator
app.kubernetes.io/version: v0.38.3
name: prometheus-operator
namespace: monitoring
spec:
replicas: 1
selector:
matchLabels:
app.kubernetes.io/component: controller
app.kubernetes.io/name: prometheus-operator
template:
metadata:
labels:
app.kubernetes.io/component: controller
app.kubernetes.io/name: prometheus-operator
app.kubernetes.io/version: v0.38.3
spec:
containers:
- args:
- --kubelet-service=kube-system/kubelet
- --logtostderr=true
- --config-reloader-image=jimmidyson/configmap-reload:v0.3.0
- --prometheus-config-reloader=quay.io/prometheus-operator/prometheus-config-reloader:v0.38.3
image: quay.io/prometheus-operator/prometheus-operator:v0.38.3
name: prometheus-operator
ports:
- containerPort: 8080
name: http
resources:
limits:
cpu: 200m
memory: 200Mi
requests:
cpu: 100m
memory: 100Mi
securityContext:
allowPrivilegeEscalation: false
nodeSelector:
beta.kubernetes.io/os: linux
securityContext:
runAsNonRoot: true
runAsUser: 65534
serviceAccountName: prometheus-operator
---
apiVersion: v1
kind: ServiceAccount
metadata:
labels:
app.kubernetes.io/component: controller
app.kubernetes.io/name: prometheus-operator
app.kubernetes.io/version: v0.38.3
name: prometheus-operator
namespace: monitoring
---
apiVersion: v1
kind: Service
metadata:
labels:
app.kubernetes.io/component: controller
app.kubernetes.io/name: prometheus-operator
app.kubernetes.io/version: v0.38.3
name: prometheus-operator
namespace: monitoring
spec:
clusterIP: None
ports:
- name: http
port: 8080
targetPort: http
selector:
app.kubernetes.io/component: controller
app.kubernetes.io/name: prometheus-operator
安裝 Longhorn ServiceMonitor
Longhorn ServiceMonitor 有一個標簽選擇器 app: longhorn-manager 來選擇 Longhorn 后端服務。
稍后,Prometheus CRD 可以包含 Longhorn ServiceMonitor,以便 Prometheus server 可以發現所有 Longhorn manager pods 及其端點。
apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
name: longhorn-prometheus-servicemonitor
namespace: monitoring
labels:
name: longhorn-prometheus-servicemonitor
spec:
selector:
matchLabels:
app: longhorn-manager
namespaceSelector:
matchNames:
- longhorn-system
endpoints:
- port: manager
安裝和配置 Prometheus AlertManager
-
使用
3個實例創建一個高可用的Alertmanager部署:apiVersion: monitoring.coreos.com/v1 kind: Alertmanager metadata: name: longhorn namespace: monitoring spec: replicas: 3 -
除非提供有效配置,否則
Alertmanager實例將無法啟動。有關 Alertmanager 配置的更多說明,請參見此處。下面的代碼給出了一個示例配置:global: resolve_timeout: 5m route: group_by: [alertname] receiver: email_and_slack receivers: - name: email_and_slack email_configs: - to: <the email address to send notifications to> from: <the sender address> smarthost: <the SMTP host through which emails are sent> # SMTP authentication information. auth_username: <the username> auth_identity: <the identity> auth_password: <the password> headers: subject: 'Longhorn-Alert' text: |- {{ range .Alerts }} *Alert:* {{ .Annotations.summary }} - `{{ .Labels.severity }}` *Description:* {{ .Annotations.description }} *Details:* {{ range .Labels.SortedPairs }} • *{{ .Name }}:* `{{ .Value }}` {{ end }} {{ end }} slack_configs: - api_url: <the Slack webhook URL> channel: <the channel or user to send notifications to> text: |- {{ range .Alerts }} *Alert:* {{ .Annotations.summary }} - `{{ .Labels.severity }}` *Description:* {{ .Annotations.description }} *Details:* {{ range .Labels.SortedPairs }} • *{{ .Name }}:* `{{ .Value }}` {{ end }} {{ end }}將上述
Alertmanager配置保存在名為alertmanager.yaml的文件中,並使用kubectl從中創建一個secret。Alertmanager實例要求secret資源命名遵循alertmanager-{ALERTMANAGER_NAME}格式。
在上一步中,Alertmanager的名稱是longhorn,所以secret名稱必須是alertmanager-longhorn$ kubectl create secret generic alertmanager-longhorn --from-file=alertmanager.yaml -n monitoring -
為了能夠查看
Alertmanager的Web UI,請通過Service公開它。一個簡單的方法是使用NodePort類型的Service:apiVersion: v1 kind: Service metadata: name: alertmanager-longhorn namespace: monitoring spec: type: NodePort ports: - name: web nodePort: 30903 port: 9093 protocol: TCP targetPort: web selector: alertmanager: longhorn創建上述服務后,您可以通過節點的
IP和端口30903訪問Alertmanager的web UI。使用上面的
NodePort服務進行快速驗證,因為它不通過TLS連接進行通信。您可能希望將服務類型更改為ClusterIP,並設置一個Ingress-controller以通過TLS連接公開Alertmanager的web UI。
安裝和配置 Prometheus server
-
創建定義警報條件的
PrometheusRule自定義資源。apiVersion: monitoring.coreos.com/v1 kind: PrometheusRule metadata: labels: prometheus: longhorn role: alert-rules name: prometheus-longhorn-rules namespace: monitoring spec: groups: - name: longhorn.rules rules: - alert: LonghornVolumeUsageCritical annotations: description: Longhorn volume {{$labels.volume}} on {{$labels.node}} is at {{$value}}% used for more than 5 minutes. summary: Longhorn volume capacity is over 90% used. expr: 100 * (longhorn_volume_usage_bytes / longhorn_volume_capacity_bytes) > 90 for: 5m labels: issue: Longhorn volume {{$labels.volume}} usage on {{$labels.node}} is critical. severity: critical有關如何定義警報規則的更多信息,請參見https://prometheus.io/docs/prometheus/latest/configuration/alerting_rules/#alerting-rules
-
如果激活了 RBAC 授權,則為
Prometheus Pod創建ClusterRole和ClusterRoleBinding:apiVersion: v1 kind: ServiceAccount metadata: name: prometheus namespace: monitoringapiVersion: rbac.authorization.k8s.io/v1beta1 kind: ClusterRole metadata: name: prometheus namespace: monitoring rules: - apiGroups: [""] resources: - nodes - services - endpoints - pods verbs: ["get", "list", "watch"] - apiGroups: [""] resources: - configmaps verbs: ["get"] - nonResourceURLs: ["/metrics"] verbs: ["get"]apiVersion: rbac.authorization.k8s.io/v1beta1 kind: ClusterRoleBinding metadata: name: prometheus roleRef: apiGroup: rbac.authorization.k8s.io kind: ClusterRole name: prometheus subjects: - kind: ServiceAccount name: prometheus namespace: monitoring -
創建
Prometheus自定義資源。請注意,我們在spec中選擇了Longhorn服務監視器(service monitor)和Longhorn規則。apiVersion: monitoring.coreos.com/v1 kind: Prometheus metadata: name: prometheus namespace: monitoring spec: replicas: 2 serviceAccountName: prometheus alerting: alertmanagers: - namespace: monitoring name: alertmanager-longhorn port: web serviceMonitorSelector: matchLabels: name: longhorn-prometheus-servicemonitor ruleSelector: matchLabels: prometheus: longhorn role: alert-rules -
為了能夠查看
Prometheus服務器的web UI,請通過Service公開它。一個簡單的方法是使用NodePort類型的Service:apiVersion: v1 kind: Service metadata: name: prometheus namespace: monitoring spec: type: NodePort ports: - name: web nodePort: 30904 port: 9090 protocol: TCP targetPort: web selector: prometheus: prometheus創建上述服務后,您可以通過節點的
IP和端口30904訪問Prometheus server的web UI。此時,您應該能夠在
Prometheus server UI的目標和規則部分看到所有Longhorn manager targets以及Longhorn rules。使用上述
NodePortservice 進行快速驗證,因為它不通過TLS連接進行通信。您可能希望將服務類型更改為ClusterIP,並設置一個Ingress-controller以通過TLS連接公開Prometheus server的web UI。
安裝 Grafana
-
創建
Grafana數據源配置:apiVersion: v1 kind: ConfigMap metadata: name: grafana-datasources namespace: monitoring data: prometheus.yaml: |- { "apiVersion": 1, "datasources": [ { "access":"proxy", "editable": true, "name": "prometheus", "orgId": 1, "type": "prometheus", "url": "http://prometheus:9090", "version": 1 } ] } -
創建
Grafana部署:apiVersion: apps/v1 kind: Deployment metadata: name: grafana namespace: monitoring labels: app: grafana spec: replicas: 1 selector: matchLabels: app: grafana template: metadata: name: grafana labels: app: grafana spec: containers: - name: grafana image: grafana/grafana:7.1.5 ports: - name: grafana containerPort: 3000 resources: limits: memory: "500Mi" cpu: "300m" requests: memory: "500Mi" cpu: "200m" volumeMounts: - mountPath: /var/lib/grafana name: grafana-storage - mountPath: /etc/grafana/provisioning/datasources name: grafana-datasources readOnly: false volumes: - name: grafana-storage emptyDir: {} - name: grafana-datasources configMap: defaultMode: 420 name: grafana-datasources -
在
NodePort 32000上暴露Grafana:apiVersion: v1 kind: Service metadata: name: grafana namespace: monitoring spec: selector: app: grafana type: NodePort ports: - port: 3000 targetPort: 3000 nodePort: 32000使用上述
NodePort服務進行快速驗證,因為它不通過TLS連接進行通信。您可能希望將服務類型更改為ClusterIP,並設置一個Ingress-controller以通過TLS連接公開Grafana。 -
使用端口
32000上的任何節點IP訪問Grafana儀表板。默認憑據為:User: admin Pass: admin -
安裝 Longhorn dashboard
進入
Grafana后,導入預置的面板:https://grafana.com/grafana/dashboards/13032有關如何導入
Grafana dashboard的說明,請參閱 https://grafana.com/docs/grafana/latest/reference/export_import/成功后,您應該會看到以下
dashboard:

將 Longhorn 指標集成到 Rancher 監控系統中
關於 Rancher 監控系統
使用 Rancher,您可以通過與領先的開源監控解決方案 Prometheus 的集成來監控集群節點、Kubernetes 組件和軟件部署的狀態和進程。
有關如何部署/啟用 Rancher 監控系統的說明,請參見https://rancher.com/docs/rancher/v2.x/en/monitoring-alerting/
將 Longhorn 指標添加到 Rancher 監控系統
如果您使用 Rancher 來管理您的 Kubernetes 並且已經啟用 Rancher 監控,您可以通過簡單地部署以下 ServiceMonitor 將 Longhorn 指標添加到 Rancher 監控中:
apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
name: longhorn-prometheus-servicemonitor
namespace: longhorn-system
labels:
name: longhorn-prometheus-servicemonitor
spec:
selector:
matchLabels:
app: longhorn-manager
namespaceSelector:
matchNames:
- longhorn-system
endpoints:
- port: manager
創建 ServiceMonitor 后,Rancher 將自動發現所有 Longhorn 指標。
然后,您可以設置 Grafana 儀表板以進行可視化。
Longhorn 監控指標
Volume(卷)
| 指標名 | 說明 | 示例 |
|---|---|---|
| longhorn_volume_actual_size_bytes | 對應節點上卷的每個副本使用的實際空間 | longhorn_volume_actual_size_bytes{node="worker-2",volume="testvol"} 1.1917312e+08 |
| longhorn_volume_capacity_bytes | 此卷的配置大小(以 byte 為單位) | longhorn_volume_capacity_bytes{node="worker-2",volume="testvol"} 6.442450944e+09 |
| longhorn_volume_state | 本卷狀態: 1=creating, 2=attached, 3=Detached, 4=Attaching, 5=Detaching, 6=Deleting | longhorn_volume_state{node="worker-2",volume="testvol"} 2 |
| longhorn_volume_robustness | 本卷的健壯性: 0=unknown, 1=healthy, 2=degraded, 3=faulted | longhorn_volume_robustness{node="worker-2",volume="testvol"} 1 |
Node(節點)
| 指標名 | 說明 | 示例 |
|---|---|---|
| longhorn_node_status | 該節點的狀態: 1=true, 0=false | longhorn_node_status{condition="ready",condition_reason="",node="worker-2"} 1 |
| longhorn_node_count_total | Longhorn 系統中的節點總數 | longhorn_node_count_total 4 |
| longhorn_node_cpu_capacity_millicpu | 此節點上的最大可分配 CPU | longhorn_node_cpu_capacity_millicpu{node="worker-2"} 2000 |
| longhorn_node_cpu_usage_millicpu | 此節點上的 CPU 使用率 | longhorn_node_cpu_usage_millicpu{node="pworker-2"} 186 |
| longhorn_node_memory_capacity_bytes | 此節點上的最大可分配內存 | longhorn_node_memory_capacity_bytes{node="worker-2"} 4.031229952e+09 |
| longhorn_node_memory_usage_bytes | 此節點上的內存使用情況 | longhorn_node_memory_usage_bytes{node="worker-2"} 1.833582592e+09 |
| longhorn_node_storage_capacity_bytes | 本節點的存儲容量 | longhorn_node_storage_capacity_bytes{node="worker-3"} 8.3987283968e+10 |
| longhorn_node_storage_usage_bytes | 該節點的已用存儲 | longhorn_node_storage_usage_bytes{node="worker-3"} 9.060941824e+09 |
| longhorn_node_storage_reservation_bytes | 此節點上為其他應用程序和系統保留的存儲空間 | longhorn_node_storage_reservation_bytes{node="worker-3"} 2.519618519e+10 |
Disk(磁盤)
| 指標名 | 說明 | 示例 |
|---|---|---|
| longhorn_disk_capacity_bytes | 此磁盤的存儲容量 | longhorn_disk_capacity_bytes{disk="default-disk-8b28ee3134628183",node="worker-3"} 8.3987283968e+10 |
| longhorn_disk_usage_bytes | 此磁盤的已用存儲空間 | longhorn_disk_usage_bytes{disk="default-disk-8b28ee3134628183",node="worker-3"} 9.060941824e+09 |
| longhorn_disk_reservation_bytes | 此磁盤上為其他應用程序和系統保留的存儲空間 | longhorn_disk_reservation_bytes{disk="default-disk-8b28ee3134628183",node="worker-3"} 2.519618519e+10 |
Instance Manager(實例管理器)
| 指標名 | 說明 | 示例 |
|---|---|---|
| longhorn_instance_manager_cpu_usage_millicpu | 這個 longhorn 實例管理器的 CPU 使用率 | longhorn_instance_manager_cpu_usage_millicpu{instance_manager="instance-manager-e-2189ed13",instance_manager_type="engine",node="worker-2"} 80 |
| longhorn_instance_manager_cpu_requests_millicpu | 在這個 Longhorn 實例管理器的 kubernetes 中請求的 CPU 資源 | longhorn_instance_manager_cpu_requests_millicpu{instance_manager="instance-manager-e-2189ed13",instance_manager_type="engine",node="worker-2"} 250 |
| longhorn_instance_manager_memory_usage_bytes | 這個 longhorn 實例管理器的內存使用情況 | longhorn_instance_manager_memory_usage_bytes{instance_manager="instance-manager-e-2189ed13",instance_manager_type="engine",node="worker-2"} 2.4072192e+07 |
| longhorn_instance_manager_memory_requests_bytes | 這個 longhorn 實例管理器在 Kubernetes 中請求的內存 | longhorn_instance_manager_memory_requests_bytes{instance_manager="instance-manager-e-2189ed13",instance_manager_type="engine",node="worker-2"} 0 |
Manager(管理器)
| 指標名 | 說明 | 示例 |
|---|---|---|
| longhorn_manager_cpu_usage_millicpu | 這個 Longhorn Manager 的 CPU 使用率 | longhorn_manager_cpu_usage_millicpu{manager="longhorn-manager-5rx2n",node="worker-2"} 27 |
| longhorn_manager_memory_usage_bytes | 這個 Longhorn Manager 的內存使用情況 | longhorn_manager_memory_usage_bytes{manager="longhorn-manager-5rx2n",node="worker-2"} 2.6144768e+07 |
支持 Kubelet Volume 指標
關於 Kubelet Volume 指標
Kubelet 公開了以下指標:
kubelet_volume_stats_capacity_byteskubelet_volume_stats_available_byteskubelet_volume_stats_used_byteskubelet_volume_stats_inodeskubelet_volume_stats_inodes_freekubelet_volume_stats_inodes_used
這些指標衡量與 Longhorn 塊設備內的 PVC 文件系統相關的信息。
它們與 longhorn_volume_* 指標不同,后者測量特定於 Longhorn 塊設備(block device)的信息。
您可以設置一個監控系統來抓取 Kubelet 指標端點以獲取 PVC 的狀態並設置異常事件的警報,例如 PVC 即將耗盡存儲空間。
一個流行的監控設置是 prometheus-operator/kube-prometheus-stack,,它抓取 kubelet_volume_stats_* 指標並為它們提供儀表板和警報規則。
Longhorn CSI 插件支持
在 v1.1.0 中,Longhorn CSI 插件根據 CSI spec 支持 NodeGetVolumeStats RPC。
這允許 kubelet 查詢 Longhorn CSI 插件以獲取 PVC 的狀態。
然后 kubelet 在 kubelet_volume_stats_* 指標中公開該信息。
Longhorn 警報規則示例
我們在下面提供了幾個示例 Longhorn 警報規則供您參考。請參閱此處獲取所有可用 Longhorn 指標的列表並構建您自己的警報規則。
apiVersion: monitoring.coreos.com/v1
kind: PrometheusRule
metadata:
labels:
prometheus: longhorn
role: alert-rules
name: prometheus-longhorn-rules
namespace: monitoring
spec:
groups:
- name: longhorn.rules
rules:
- alert: LonghornVolumeActualSpaceUsedWarning
annotations:
description: The actual space used by Longhorn volume {{$labels.volume}} on {{$labels.node}} is at {{$value}}% capacity for
more than 5 minutes.
summary: The actual used space of Longhorn volume is over 90% of the capacity.
expr: (longhorn_volume_actual_size_bytes / longhorn_volume_capacity_bytes) * 100 > 90
for: 5m
labels:
issue: The actual used space of Longhorn volume {{$labels.volume}} on {{$labels.node}} is high.
severity: warning
- alert: LonghornVolumeStatusCritical
annotations:
description: Longhorn volume {{$labels.volume}} on {{$labels.node}} is Fault for
more than 2 minutes.
summary: Longhorn volume {{$labels.volume}} is Fault
expr: longhorn_volume_robustness == 3
for: 5m
labels:
issue: Longhorn volume {{$labels.volume}} is Fault.
severity: critical
- alert: LonghornVolumeStatusWarning
annotations:
description: Longhorn volume {{$labels.volume}} on {{$labels.node}} is Degraded for
more than 5 minutes.
summary: Longhorn volume {{$labels.volume}} is Degraded
expr: longhorn_volume_robustness == 2
for: 5m
labels:
issue: Longhorn volume {{$labels.volume}} is Degraded.
severity: warning
- alert: LonghornNodeStorageWarning
annotations:
description: The used storage of node {{$labels.node}} is at {{$value}}% capacity for
more than 5 minutes.
summary: The used storage of node is over 70% of the capacity.
expr: (longhorn_node_storage_usage_bytes / longhorn_node_storage_capacity_bytes) * 100 > 70
for: 5m
labels:
issue: The used storage of node {{$labels.node}} is high.
severity: warning
- alert: LonghornDiskStorageWarning
annotations:
description: The used storage of disk {{$labels.disk}} on node {{$labels.node}} is at {{$value}}% capacity for
more than 5 minutes.
summary: The used storage of disk is over 70% of the capacity.
expr: (longhorn_disk_usage_bytes / longhorn_disk_capacity_bytes) * 100 > 70
for: 5m
labels:
issue: The used storage of disk {{$labels.disk}} on node {{$labels.node}} is high.
severity: warning
- alert: LonghornNodeDown
annotations:
description: There are {{$value}} Longhorn nodes which have been offline for more than 5 minutes.
summary: Longhorn nodes is offline
expr: longhorn_node_total - (count(longhorn_node_status{condition="ready"}==1) OR on() vector(0))
for: 5m
labels:
issue: There are {{$value}} Longhorn nodes are offline
severity: critical
- alert: LonghornIntanceManagerCPUUsageWarning
annotations:
description: Longhorn instance manager {{$labels.instance_manager}} on {{$labels.node}} has CPU Usage / CPU request is {{$value}}% for
more than 5 minutes.
summary: Longhorn instance manager {{$labels.instance_manager}} on {{$labels.node}} has CPU Usage / CPU request is over 300%.
expr: (longhorn_instance_manager_cpu_usage_millicpu/longhorn_instance_manager_cpu_requests_millicpu) * 100 > 300
for: 5m
labels:
issue: Longhorn instance manager {{$labels.instance_manager}} on {{$labels.node}} consumes 3 times the CPU request.
severity: warning
- alert: LonghornNodeCPUUsageWarning
annotations:
description: Longhorn node {{$labels.node}} has CPU Usage / CPU capacity is {{$value}}% for
more than 5 minutes.
summary: Longhorn node {{$labels.node}} experiences high CPU pressure for more than 5m.
expr: (longhorn_node_cpu_usage_millicpu / longhorn_node_cpu_capacity_millicpu) * 100 > 90
for: 5m
labels:
issue: Longhorn node {{$labels.node}} experiences high CPU pressure.
severity: warning
在https://prometheus.io/docs/prometheus/latest/configuration/alerting_rules/#alerting-rules
查看有關如何定義警報規則的更多信息。
公眾號:黑客下午茶
