日志收集詳解之logstash解析日志格式(一)


此系列文章一共分為三部分,分為 filebeat 部分,logstash 部分,es 部分。通過此系列的文章,可以快速了解整個日志收集的大概,本篇主要講解logstash這一塊

1. logstash 介紹

版本:logstash-7.12.0

logstash就是用來處理數據的,通過建一個管道,將數據按照不同的階段,進行處理,並最終輸出的一個過程,以輸入到elasticsearch為例,如下圖:

logstash

basic logstash pipeline

2. logstash 工作原理

Logstash 事件處理管道有三個階段:輸入 → 過濾 → 輸出。輸入生成事件,過濾器修改事件,然后輸出到其他地方。輸入和輸出支持編解碼器,使您能夠在數據進入或退出管道時對其進行編碼或解碼,而不必使用單獨的過濾器。

參考官當文檔:https://www.elastic.co/guide/en/logstash/current/pipeline.html#pipeline

2.1 輸入端

input: 管道的輸入端,可以將數據通過配置 input 輸入到 logstash 的管道中,常用的輸入插件有:

  • kafka
  • redis
  • file
  • syslog
  • beats

2.2 過濾器

過濾器是 Logstash 管道中的中間處理設備。您可以將篩選器與條件組合在一起,以便在事件滿足特定條件時對其執行操作。一些有用的過濾器包括:

  • grok: 解析和構造任意文本。Grok 是目前 Logstash 中解析非結構化日志數據為結構化和可查詢數據的最佳方式。Logstash 內置了 120 個模式,你很可能會找到一個滿足你需要的模式!
  • mutate: 對事件字段執行通用轉換。您可以重命名、刪除、替換和修改事件中的字段。
  • drop: 完全刪除事件,例如 debug 事件。
  • clone: 創建事件的副本,可以添加或刪除字段。
  • geoip: 添加關於 IP 地址的地理位置的信息。
  • json: 對 json 格式的數據進行處理。
  • json_encode: 轉換成 json 格式的數據。

2.3 輸出端

輸出是 Logstash 管道的最后階段。事件可以通過多個輸出,但是一旦所有輸出處理完成,事件就完成了它的執行。一些常用的輸出包括:

  • elasticsearch: 發送事件數據到 elasticsearch
  • file: 將事件數據寫入磁盤文件。

3. logstash 容器化部署

容器化部署時直接將官方鏡像拿過來,通過 k8s 的Deployment資源類型進行部署即可。
官方鏡像地址:

3.1 configmap 文件參考

下面的這個configmapinput通過配置項topics_pattern指定一個正則規則來靈活的去匹配一組 topic(當然也可以是用topics來指定具體的一組 topic), 然后這邊沒有使用filter做處理,直接輸出到elasticsearch中。

全局配置文件

apiVersion: v1
data:
  logstash.yml: |-
    http.host: "0.0.0.0"
    pipeline.workers: 2
    pipeline.batch.size: 250
    pipeline.batch.delay: 50
    xpack.management.enabled: false
kind: ConfigMap
metadata:
  name: logstash-config-global
  namespace: ops-logging

業務相關的配置文件

kind: ConfigMap
apiVersion: v1
metadata:
  name: logstash-config-a
  namespace: ops-logging
data:
  k8s.conf: |-
    input {
        kafka {
            bootstrap_servers => "10.127.91.90:9092,10.127.91.91:9092,10.127.91.92:9092"
            group_id => "k8s-hw-group"
            client_id => "k8s-hw-client"
            consumer_threads => 1
            auto_offset_reset => latest
            topics_pattern => "k8s-hw.*"
            codec => "json"
        }
    }
    filter {
    }
    output {
        if [k8s][nameSpace] == "test" {
            elasticsearch {
                hosts => ["10.127.91.75:9200", "10.127.91.76:9200", "10.127.91.77:9200", "10.127.91.78:9200", "10.127.91.79:9200", "10.127.91.80:9200", "10.127.91.81:9200"]
                index => "k8s-%{[k8s][k8sName]}-%{[k8s][nameSpace]}-%{+YYYYMMddHH}"
                sniffing => "true"
                timeout => 10
            }
        } else {
            elasticsearch {
                hosts => ["10.127.91.75:9200", "10.127.91.76:9200", "10.127.91.77:9200", "10.127.91.78:9200", "10.127.91.79:9200", "10.127.91.80:9200", "10.127.91.81:9200"]
                index => "k8s-%{[k8s][k8sName]}-%{[k8s][nameSpace]}-%{+YYYYMMdd}"
                sniffing => "true"
                timeout => 10
            }
        }
    }

3.1.1 關於配置項需要做下簡單說明

3.1.1.1 INPUT
3.1.1.2 OUTPUT

output 設置了一個判斷,用來對來自 k8s 命名空間的 topic 進行區分,由於我的test命名空間中的日志量比較大,所以我在建索引時,按小時進行索引,所以這邊單獨設置了下,而其他命名空間走默認的配置項即可

具體可參考官方文檔: https://www.elastic.co/guide/en/logstash/current/plugins-outputs-elasticsearch.html

3.2 deployment 文件參考

apiVersion: apps/v1
kind: Deployment
metadata:
  labels:
    app: logstash-k8s
  name: logstash-k8s
  namespace: ops-logging
spec:
  progressDeadlineSeconds: 600
  replicas: 0
  revisionHistoryLimit: 10
  selector:
    matchLabels:
      app: logstash-k8s
  strategy:
    rollingUpdate:
      maxSurge: 25%
      maxUnavailable: 25%
    type: RollingUpdate
  template:
    metadata:
      labels:
        app: logstash-k8s
    spec:
      containers:
      - args:
        - /usr/share/logstash/bin/logstash -f /usr/share/logstash/conf/k8s.conf
        command:
        - /bin/sh
        - -c
        image: docker.elastic.co/logstash/logstash:7.12.0
        imagePullPolicy: IfNotPresent
        name: logstash-k8s
        resources:
          limits:
            cpu: "4"
            memory: 4G
          requests:
            cpu: "4"
            memory: 4G
        terminationMessagePath: /dev/termination-log
        terminationMessagePolicy: File
        volumeMounts:
        - mountPath: /usr/share/logstash/conf
          name: config-volume
        - mountPath: /usr/share/logstash/config/logstash.yml
          name: logstash-config
          readOnly: true
          subPath: logstash.yml
      - args:
        - -c
        - /opt/bitnami/logstash-exporter/bin/logstash_exporter --logstash.endpoint='http://localhost:9600'
        command:
        - /bin/sh
        image: bitnami/logstash-exporter:latest
        imagePullPolicy: IfNotPresent
        name: logstash-exporter-k8s
        ports:
        - containerPort: 9198
          name: lg-exporter
          protocol: TCP
        resources: {}
        terminationMessagePath: /dev/termination-log
        terminationMessagePolicy: File
      dnsPolicy: ClusterFirst
      restartPolicy: Always
      schedulerName: default-scheduler
      securityContext:
        runAsUser: 0
      terminationGracePeriodSeconds: 30
      volumes:
      - configMap:
          defaultMode: 420
          items:
          - key: k8s.conf
            path: k8s.conf
          name: logstash-config-sg-saas-pro-hbali
        name: config-volume
      - configMap:
          defaultMode: 420
          name: logstash-config-global
        name: logstash-config

logstash-exporter 的 svc 參考

apiVersion: v1
kind: Service
metadata:
  name: logstash-exporter-a
  namespace: ops-logging
spec:
  ports:
  - name: http
    port: 9198
    protocol: TCP
    targetPort: 9198
    nodePort: 30003
  selector:
    app: logstash
  sessionAffinity: None
  type: NodePort

上面的話應該算是logstash最簡單的配置了,假如我們想調試的話,可以把下面這段改下

      containers:
      - args:
        - /usr/share/logstash/bin/logstash -f /usr/share/logstash/conf/k8s.conf

改成

      containers:
      - args:
        - sleep 1000000

這樣我們在調試時,可直接進入到容器中調試。

4. logstash 的進階使用

4.1 需求介紹

2021-08-01 12:26:04.063 INFO 24 --- [traceId=edda5daxxxxxxxxxcfa3387d48][ xnio-1 task-1] c.g.c.gateway.filter.AutoTestFilter : {"traceId":"edda5da8xxxxxxxxxxxxxxxxxxx387d48","headers":[{"x-forwarded-proto":"http,http","x-tenant-id":"123","x-ca-key":"a62d5xxxxxxxxxxxxxxxxxxxxxxxxb1cff8637","x-forwarded-port":"80,80","x-forwarded-for":"10.244.2.0","x-ca-client-ip":"10.244.2.0","x-product-code":"xxxxx","authorization":"bearer 0ed29xxxxxxxxxxxxxxxxxxxxxxxxx71899","x-forwarded-host":"gatxxxxxxxxx.gm","x-forwarded-prefix":"/xxxxxx","trace-id":"edda5da8278xxxxxxxxxxxxxxxxxxx49cfa3387d48","x-ca-api-id":"1418470181321347075","x-ca-env-code":"TEST"}],"appName":"超級管理員","responseTime":15,"serverName":"test-server","appkey":"a62d54b6bxxxxxxxxxxxxxxxxxxx37","time":"2021-08-01 12:26:04.062","responseStatus":200,"url":"/test/v4/orgs/123/list-children","token":"bearer 0ed29c72-0d68-4e13-a3f3-c77e2d971899"}

上面是很常見的一條java程序的日志,我們首先想格式化此日志,然后取出里面的請求 body,也就是里面的一條json

{"traceId":"edda5da8xxxxxxxxxxxxxxxxxxx387d48","headers":[{"x-forwarded-proto":"http,http","x-tenant-id":"123","x-ca-key":"a62d5xxxxxxxxxxxxxxxxxxxxxxxxb1cff8637","x-forwarded-port":"80,80","x-forwarded-for":"10.244.2.0","x-ca-client-ip":"10.244.2.0","x-product-code":"xxxxx","authorization":"bearer 0ed29xxxxxxxxxxxxxxxxxxxxxxxxx71899","x-forwarded-host":"gatxxxxxxxxx.gm","x-forwarded-prefix":"/xxxxxx","trace-id":"edda5da8278xxxxxxxxxxxxxxxxxxx49cfa3387d48","x-ca-api-id":"1418470181321347075","x-ca-env-code":"TEST"}],"appName":"超級管理員","responseTime":15,"serverName":"test-server","appkey":"a62d54b6bxxxxxxxxxxxxxxxxxxx37","time":"2021-08-01 12:26:04.062","responseStatus":200,"url":"/test/v4/orgs/123/list-children","token":"bearer 0ed29c72-0d68-4e13-a3f3-c77e2d971899"}

取出來之后,我們希望在 elasticsearch 里能根據指定的字段進行快速查詢和聚合,因此需要對這段 json 進行重新解析,把里面的 k,v 都放到頂層,另外這段json里面還有一部分嵌套的數組,我們希望將數組中的 map 解析出來,並放到最外層中,最后將里面的一些字符串轉換成整型的數據結構。

為了方便調試,這里重新啟動了一個 pod,並指定一個了最簡單的配置,將日志輸出到控制台上,方便調試

apiVersion: apps/v1
kind: Deployment
metadata:
  name: logstash-debug
spec:
  progressDeadlineSeconds: 600
  replicas: 1
  revisionHistoryLimit: 10
  selector:
    matchLabels:
      app: logstash-debug
  strategy:
    rollingUpdate:
      maxSurge: 25%
      maxUnavailable: 25%
    type: RollingUpdate
  template:
    metadata:
      labels:
        app: logstash-debug
    spec:
      containers:
      - args:
        - sleep 1000000000000
        command:
        - /bin/sh
        - -c
        image: docker.elastic.co/logstash/logstash:7.12.0
        imagePullPolicy: IfNotPresent
        name: logstash-debug
        resources:
          limits:
            cpu: "4"
            memory: 4G
          requests:
            cpu: "4"
            memory: 4G
        terminationMessagePath: /dev/termination-log
        terminationMessagePolicy: File
      dnsPolicy: ClusterFirst
      restartPolicy: Always
      schedulerName: default-scheduler
      securityContext:
        runAsUser: 0
      terminationGracePeriodSeconds: 30

pod 啟動成功之后,我們直接指定配置文件

# debug.conf

input {
	file {
		path 			=> ["/var/log/test.log"]
		start_position 	=> "beginning"
		sincedb_path 	=> "/dev/null"
	}
}

filter {

}

output {
	stdout {
		codec => rubydebug
	}
}

啟動

logstash -f debug.conf

隨后將上面的那條日志寫道/var/log/test.log

最終控制台輸出結果

{
          "host" => "logstash-debug-649dcb789c-n9866",
          "path" => "/var/log/test.log",
    "@timestamp" => 2021-08-01T06:46:43.292Z,
      "@version" => "1",
       "message" => "2021-08-01 12:26:04.063  INFO 24 --- [traceId=edda5daxxxxxxxxxcfa3387d48] [  XNIO-1 task-1] c.g.c.gateway.filter.AutoTestFilter      : {\"traceId\":\"edda5da8xxxxxxxxxxxxxxxxxxx387d48\",\"headers\":[{\"x-forwarded-proto\":\"http,http\",\"x-tenant-id\":\"123\",\"x-ca-key\":\"a62d5xxxxxxxxxxxxxxxxxxxxxxxxb1cff8637\",\"x-forwarded-port\":\"80,80\",\"x-forwarded-for\":\"10.244.2.0\",\"x-ca-client-ip\":\"10.244.2.0\",\"x-product-code\":\"xxxxx\",\"authorization\":\"bearer 0ed29xxxxxxxxxxxxxxxxxxxxxxxxx71899\",\"x-forwarded-host\":\"gatxxxxxxxxx.gm\",\"x-forwarded-prefix\":\"/xxxxxx\",\"trace-id\":\"edda5da8278xxxxxxxxxxxxxxxxxxx49cfa3387d48\",\"x-ca-api-id\":\"1418470181321347075\",\"x-ca-env-code\":\"TEST\"}],\"appName\":\"超級管理員\",\"responseTime\":15,\"serverName\":\"test-server\",\"appkey\":\"a62d54b6bxxxxxxxxxxxxxxxxxxx37\",\"time\":\"2021-08-01 12:26:04.062\",\"responseStatus\":200,\"url\":\"/test/v4/orgs/123/list-children\",\"token\":\"bearer 0ed29c72-0d68-4e13-a3f3-c77e2d971899\"}"
}

4.2 一步步的去解析日志

使用 logstash 對原始日志進行日志格式化,這應該算是最常見的一種需求了,下面將通過filter中的grok來進行日志格式話,下面以上面的日志為例,我們來通過自定義日志格式,然后最終獲取日志里面的一段 json 日志,也就是這一段{"traceId":"edda5da8xxxxxxxxxxxxxxxxxxx387d48","headers":[{"x-forwarded-proto":"http,http","x-tenant-id":"123","x-ca-key":"a62d5xxxxxxxxxxxxxxxxxxxxxxxxb1cff8637","x-forwarded-port":"80,80","x-forwarded-for":"10.244.2.0","x-ca-client-ip":"10.244.2.0","x-product-code":"xxxxx","authorization":"bearer 0ed29xxxxxxxxxxxxxxxxxxxxxxxxx71899","x-forwarded-host":"gatxxxxxxxxx.gm","x-forwarded-prefix":"/xxxxxx","trace-id":"edda5da8278xxxxxxxxxxxxxxxxxxx49cfa3387d48","x-ca-api-id":"1418470181321347075","x-ca-env-code":"TEST"}],"appName":"超級管理員","responseTime":15,"serverName":"test-server","appkey":"a62d54b6bxxxxxxxxxxxxxxxxxxx37","time":"2021-08-01 12:26:04.062","responseStatus":200,"url":"/test/v4/orgs/123/list-children","token":"bearer 0ed29c72-0d68-4e13-a3f3-c77e2d971899"}

4.2.1 首先進行日志格式化,取出我們想要的日志

grok 官方參考文檔: https://www.elastic.co/guide/en/logstash/current/plugins-filters-grok.html
grok 調試工具:https://grokdebug.herokuapp.com/

在上面的工具調試后,會將調試結果一並輸出,如下圖所示:

image-20210801160246344

下面是放到 logstash 中的配置段

filter {
    grok {
        match => {"message" => '%{TIMESTAMP_ISO8601:timeFlag}  %{LOGLEVEL:logLevel} %{NUMBER:id} --- \[(?<traceId>traceId=.*)\] \[ (?<Nio>.*)\] (?<filter>[a-z0-9A-Z.]+)      : (?<originBody>{".*"}$)'}
    }
}

這里格式化的就是message中的日志,通過一堆正則,然后來匹配出我們想要的關鍵日志,匹配結果如下:

{
       "message" => "2021-08-01 12:26:04.063  INFO 24 --- [traceId=edda5daxxxxxxxxxcfa3387d48] [  XNIO-1 task-1] c.g.c.gateway.filter.AutoTestFilter      : {\"traceId\":\"edda5da8xxxxxxxxxxxxxxxxxxx387d48\",\"headers\":[{\"x-forwarded-proto\":\"http,http\",\"x-tenant-id\":\"123\",\"x-ca-key\":\"a62d5xxxxxxxxxxxxxxxxxxxxxxxxb1cff8637\",\"x-forwarded-port\":\"80,80\",\"x-forwarded-for\":\"10.244.2.0\",\"x-ca-client-ip\":\"10.244.2.0\",\"x-product-code\":\"xxxxx\",\"authorization\":\"bearer 0ed29xxxxxxxxxxxxxxxxxxxxxxxxx71899\",\"x-forwarded-host\":\"gatxxxxxxxxx.gm\",\"x-forwarded-prefix\":\"/xxxxxx\",\"trace-id\":\"edda5da8278xxxxxxxxxxxxxxxxxxx49cfa3387d48\",\"x-ca-api-id\":\"1418470181321347075\",\"x-ca-env-code\":\"TEST\"}],\"appName\":\"超級管理員\",\"responseTime\":15,\"serverName\":\"test-server\",\"appkey\":\"a62d54b6bxxxxxxxxxxxxxxxxxxx37\",\"time\":\"2021-08-01 12:26:04.062\",\"responseStatus\":200,\"url\":\"/test/v4/orgs/123/list-children\",\"token\":\"bearer 0ed29c72-0d68-4e13-a3f3-c77e2d971899\"}",
            "id" => "24",
           "Nio" => " XNIO-1 task-1",
    "@timestamp" => 2021-08-01T07:25:09.041Z,
        "filter" => "c.g.c.gateway.filter.AutoTestFilter",
       "traceId" => "traceId=edda5daxxxxxxxxxcfa3387d48",
      "timeFlag" => "2021-08-01 12:26:04.063",
          "path" => "/var/log/test.log",
    "originBody" => "{\"traceId\":\"edda5da8xxxxxxxxxxxxxxxxxxx387d48\",\"headers\":[{\"x-forwarded-proto\":\"http,http\",\"x-tenant-id\":\"123\",\"x-ca-key\":\"a62d5xxxxxxxxxxxxxxxxxxxxxxxxb1cff8637\",\"x-forwarded-port\":\"80,80\",\"x-forwarded-for\":\"10.244.2.0\",\"x-ca-client-ip\":\"10.244.2.0\",\"x-product-code\":\"xxxxx\",\"authorization\":\"bearer 0ed29xxxxxxxxxxxxxxxxxxxxxxxxx71899\",\"x-forwarded-host\":\"gatxxxxxxxxx.gm\",\"x-forwarded-prefix\":\"/xxxxxx\",\"trace-id\":\"edda5da8278xxxxxxxxxxxxxxxxxxx49cfa3387d48\",\"x-ca-api-id\":\"1418470181321347075\",\"x-ca-env-code\":\"TEST\"}],\"appName\":\"超級管理員\",\"responseTime\":15,\"serverName\":\"test-server\",\"appkey\":\"a62d54b6bxxxxxxxxxxxxxxxxxxx37\",\"time\":\"2021-08-01 12:26:04.062\",\"responseStatus\":200,\"url\":\"/test/v4/orgs/123/list-children\",\"token\":\"bearer 0ed29c72-0d68-4e13-a3f3-c77e2d971899\"}",
      "@version" => "1",
          "host" => "logstash-debug-649dcb789c-n9866",
      "logLevel" => "INFO"
}

4.2.1 刪除不必要的字段

經過處理之后,我們可以看到新加了一個字段名叫做originBody,我們真正想要的就是這段,其他的字段都不需要,因此把沒有用的字段刪除, 這里用到了mutate中的remove_field來刪除字段,關於該字段的具體使用可以參考其官方文檔:https://www.elastic.co/guide/en/logstash/current/plugins-filters-mutate.html#plugins-filters-mutate-remove_field

filter {
    grok {
        match => {"message" => '%{TIMESTAMP_ISO8601:timeFlag}  %{LOGLEVEL:logLevel} %{NUMBER:id} --- \[(?<traceId>traceId=.*)\] \[ (?<Nio>.*)\] (?<filter>[a-z0-9A-Z.]+)      : (?<originBody>{".*"}$)'}
    }
    mutate {
        remove_field => ["message", "timeFlag", "logLevel", "id", "traceId", "Nio", "filter"]
    }
}

經過此次處理后,會去掉message字段,結果如下所示:

{
    "path" => "/var/log/test.log",
    "originBody" => "{\"traceId\":\"edda5da8xxxxxxxxxxxxxxxxxxx387d48\",\"headers\":[{\"x-forwarded-proto\":\"http,http\",\"x-tenant-id\":\"123\",\"x-ca-key\":\"a62d5xxxxxxxxxxxxxxxxxxxxxxxxb1cff8637\",\"x-forwarded-port\":\"80,80\",\"x-forwarded-for\":\"10.244.2.0\",\"x-ca-client-ip\":\"10.244.2.0\",\"x-product-code\":\"xxxxx\",\"authorization\":\"bearer 0ed29xxxxxxxxxxxxxxxxxxxxxxxxx71899\",\"x-forwarded-host\":\"gatxxxxxxxxx.gm\",\"x-forwarded-prefix\":\"/xxxxxx\",\"trace-id\":\"edda5da8278xxxxxxxxxxxxxxxxxxx49cfa3387d48\",\"x-ca-api-id\":\"1418470181321347075\",\"x-ca-env-code\":\"TEST\"}],\"appName\":\"超級管理員\",\"responseTime\":15,\"serverName\":\"test-server\",\"appkey\":\"a62d54b6bxxxxxxxxxxxxxxxxxxx37\",\"time\":\"2021-08-01 12:26:04.062\",\"responseStatus\":200,\"url\":\"/test/v4/orgs/123/list-children\",\"token\":\"bearer 0ed29c72-0d68-4e13-a3f3-c77e2d971899\"}",
    "@version" => "1",
    "@timestamp" => 2021-08-01T07:30:17.548Z,
    "host" => "logstash-debug-649dcb789c-n9866",
}

4.2.2 將所需日志進行 json 解析

然后我們想將originBody這個json中的字段放到頂層中,這里用到了filter中的json選項,用來解析json數據類型的日志,這里面有兩個關鍵字段需要知道:

  • source: 指定要處理的 json 字段,這里對應的就是originBody
  • target: 解析后的 json 數據存放位置,如果不指定將輸出到頂層, 由於我這里就是要將解析好的數據放到頂層,因此不指定target
filter {
    grok {
        match => {"message" => '%{TIMESTAMP_ISO8601:timeFlag}  %{LOGLEVEL:logLevel} %{NUMBER:id} --- \[(?<traceId>traceId=.*)\] \[ (?<Nio>.*)\] (?<filter>[a-z0-9A-Z.]+)      : (?<originBody>{".*"}$)'}
    }
    json {
        source => "originBody"
    }
    mutate {
        remove_field => ["message", "timeFlag", "logLevel", "id", "traceId", "Nio", "filter", "originBody"]
    }
}

處理結果如下

{
          "@version" => "1",
        "serverName" => "test-server",
              "time" => "2021-08-01 12:26:04.062",
            "appkey" => "a62d54b6bxxxxxxxxxxxxxxxxxxx37",
    "responseStatus" => 200,
               "url" => "/test/v4/orgs/123/list-children",
           "headers" => [
        [0] {
                   "x-tenant-id" => "123",
                 "x-ca-env-code" => "TEST",
                      "x-ca-key" => "a62d5xxxxxxxxxxxxxxxxxxxxxxxxb1cff8637",
                 "authorization" => "bearer 0ed29xxxxxxxxxxxxxxxxxxxxxxxxx71899",
                "x-product-code" => "xxxxx",
                "x-ca-client-ip" => "10.244.2.0",
              "x-forwarded-host" => "gatxxxxxxxxx.gm",
            "x-forwarded-prefix" => "/xxxxxx",
               "x-forwarded-for" => "10.244.2.0",
                   "x-ca-api-id" => "1418470181321347075",
             "x-forwarded-proto" => "http,http",
                      "trace-id" => "edda5da8278xxxxxxxxxxxxxxxxxxx49cfa3387d48",
              "x-forwarded-port" => "80,80"
        }
    ],
              "host" => "logstash-debug-649dcb789c-n9866",
      "responseTime" => 15,
             "token" => "bearer 0ed29c72-0d68-4e13-a3f3-c77e2d971899",
           "appName" => "超級管理員",
              "path" => "/var/log/test.log",
        "@timestamp" => 2021-08-01T07:50:26.403Z
}

4.2.3 優化數組的結構

基本上到這里我們想要的數據差不多都呈現出來了,但是可以看到headers這個是個數組,而里面的元素是一個map,我們需要將數組中的 map 給解析到外層,這里使用的是split這個選項,使用也很簡單,具體可參考官方文檔: https://www.elastic.co/guide/en/logstash/current/plugins-filters-split.html

filter {
    grok {
        match => {"message" => '%{TIMESTAMP_ISO8601:timeFlag}  %{LOGLEVEL:logLevel} %{NUMBER:id} --- \[(?<traceId>traceId=.*)\] \[ (?<Nio>.*)\] (?<filter>[a-z0-9A-Z.]+)      : (?<originBody>{".*"}$)'}
    }
    json {
        source => "originBody"
    }
    split {
        field => "headers"
    }
    mutate {
        remove_field => ["message", "timeFlag", "logLevel", "id", "traceId", "Nio", "filter", "originBody"]
    }
}

處理完之后,結果如下:

{
           "appName" => "超級管理員",
        "serverName" => "test-server",
          "@version" => "1",
               "url" => "/test/v4/orgs/123/list-children",
              "time" => "2021-08-01 12:26:04.062",
             "token" => "bearer 0ed29c72-0d68-4e13-a3f3-c77e2d971899",
        "@timestamp" => 2021-08-01T07:55:01.353Z,
            "appkey" => "a62d54b6bxxxxxxxxxxxxxxxxxxx37",
              "path" => "/var/log/test.log",
      "responseTime" => 15,
    "responseStatus" => 200,
           "headers" => {
         "x-forwarded-proto" => "http,http",
            "x-product-code" => "xxxxx",
            "x-ca-client-ip" => "10.244.2.0",
             "authorization" => "bearer 0ed29xxxxxxxxxxxxxxxxxxxxxxxxx71899",
                  "x-ca-key" => "a62d5xxxxxxxxxxxxxxxxxxxxxxxxb1cff8637",
           "x-forwarded-for" => "10.244.2.0",
                  "trace-id" => "edda5da8278xxxxxxxxxxxxxxxxxxx49cfa3387d48",
          "x-forwarded-host" => "gatxxxxxxxxx.gm",
        "x-forwarded-prefix" => "/xxxxxx",
          "x-forwarded-port" => "80,80",
               "x-tenant-id" => "123",
             "x-ca-env-code" => "TEST",
               "x-ca-api-id" => "1418470181321347075"
    },
              "host" => "logstash-debug-649dcb789c-n9866"
}

4.2.4 轉換數據類型

嗯,已經滿足了,接下來是最后一步,將某些字段的字符串轉成整型

filter {
    grok {
        match => {"message" => '%{TIMESTAMP_ISO8601:timeFlag}  %{LOGLEVEL:logLevel} %{NUMBER:id} --- \[(?<traceId>traceId=.*)\] \[ (?<Nio>.*)\] (?<filter>[a-z0-9A-Z.]+)      : (?<originBody>{".*"}$)'}
    }
    json {
        source => "originBody"
    }
    split {
        field => "headers"
    }
    mutate {
        remove_field => ["message", "timeFlag", "logLevel", "id", "traceId", "Nio", "filter", "originBody"]
        convert => {
            "responseStatus" => "integer"
            "responseTime" => "integer"
        }
    }
}

最終結果

{
           "appName" => "超級管理員",
             "token" => "bearer 0ed29c72-0d68-4e13-a3f3-c77e2d971899",
      "responseTime" => 15,
              "path" => "/var/log/test.log",
           "headers" => {
          "x-forwarded-host" => "gatxxxxxxxxx.gm",
                  "trace-id" => "edda5da8278xxxxxxxxxxxxxxxxxxx49cfa3387d48",
                  "x-ca-key" => "a62d5xxxxxxxxxxxxxxxxxxxxxxxxb1cff8637",
        "x-forwarded-prefix" => "/xxxxxx",
               "x-ca-api-id" => "1418470181321347075",
            "x-ca-client-ip" => "10.244.2.0",
           "x-forwarded-for" => "10.244.2.0",
          "x-forwarded-port" => "80,80",
             "authorization" => "bearer 0ed29xxxxxxxxxxxxxxxxxxxxxxxxx71899",
             "x-ca-env-code" => "TEST",
         "x-forwarded-proto" => "http,http",
               "x-tenant-id" => "123",
            "x-product-code" => "xxxxx"
    },
            "appkey" => "a62d54b6bxxxxxxxxxxxxxxxxxxx37",
              "time" => "2021-08-01 12:26:04.062",
          "@version" => "1",
    "responseStatus" => 200,
        "serverName" => "test-server",
               "url" => "/test/v4/orgs/123/list-children",
        "@timestamp" => 2021-08-01T07:57:54.071Z,
              "host" => "logstash-debug-649dcb789c-n9866"
}

到這里就大功告成了

5. 總結

這篇文章只說了logstash的其中一種日志處理方式,用的是它自帶的一些插件,基本上可以滿足我們日常的一些需求,但是如果加入一些邏輯處理的話,我們也可以通過自定義ruby代碼段來進行處理,下一篇文章將介紹結合ruby的日志處理。

歡迎各位朋友關注我的公眾號,來一起學習進步哦
images


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM