電機與拖動基礎


第一章 電機的基本原理

第一節

P-10
\(B =\frac{\Phi}{S}\) (1-3)
\(B =\mu_{0}H\)
可以推得 \(H=\frac{\Phi}{\mu S}\)
公式(1-7)有\(F_{m}=Ni=H_{c}l_{c}=\frac{\Phi}{\mu S_{c}} \cdot l_{c} = \frac{l_{c}}{\mu S_{c}} \cdot \Phi\)

P-12
\(R_{mg} \gg R_{mc}\)
可以根據在電場中,電阻值大於導體電阻,因此數值上可以忽略電阻/鐵芯。

P-13
圖1-9,教材右端,正負極方向標反。

P-17
右手定則,大拇指為導體運動方向。
左右有力,右手有電。

第二節 機電能量轉換

P-20
公式(1-17) \(\Psi = N\Phi\)
結合(1-14) \(e = -N \frac{d\Phi}{dt}\)
每一層線圈,可以看做一個磁通橫截面,則N層線圈對應\(N\cdot \Phi\). 其中\(\Phi\) 為每一層的磁通量.

P-23

式(1-24)\(P=-ie=i\frac{d\Psi}{dt}\rightarrow Pdt = id\Psi\)
\(W_{e}=\int_{0}^{t}Pdt=\int_{0}^{\Psi}id\Psi\)

第三節 電機的基本結構與工作原理

P-32
勵磁繞組直觀圖

P-33,教材p14,圖1-14.

點擊查看代碼

t = -1.5:0.01:1.5;
f = zeros(size(t));



for i=1:length(t)
    if t(i)>=-1.5&t(i)<=-0.5
        f(i)=-0.3;
    elseif t(i)>=-0.5&t(i)<=0.5
        f(i)=0.3;
    elseif t(i)>=0.5&t(i)<=1.5
        f(i)=-0.3;
    end
end

f1 = zeros(size(t));
f2 = zeros(size(t));
f3 = zeros(size(t));
f4 = zeros(size(t));

t1 = +0.2;
for i=1:length(t)
    
    if t(i)>=-1.5 + t1&t(i)<=-0.5 + t1
        f1(i)=-0.3;
    elseif t(i)>=-0.5+ t1&t(i)<=0.5+ t1
        f1(i)=0.3;
    elseif t(i)>=0.5+ t1&t(i)<=1.5+ t1
        f1(i)=-0.3;
    end
end


t1 = +0.4;
for i=1:length(t)
    
    if t(i)>=-1.5 + t1&t(i)<=-0.5 + t1
        f2(i)=-0.3;
    elseif t(i)>=-0.5+ t1&t(i)<=0.5+ t1
        f2(i)=0.3;
    elseif t(i)>=0.5+ t1&t(i)<=1.5+ t1
        f2(i)=-0.3;
    end
end


t1 = -0.2;
for i=1:length(t)
    
    if t(i)>=-1.5 + t1&t(i)<=-0.5 + t1
        f3(i)=-0.3;
    elseif t(i)>=-0.5+ t1&t(i)<=0.5+ t1
        f3(i)=0.3;
    elseif t(i)>=0.5+ t1&t(i)<=1.5+ t1
        f3(i)=-0.3;
    end
end


t1 = -0.4;
for i=1:length(t)
    
    if t(i)>=-1.5 + t1&t(i)<=-0.5 + t1
        f4(i)=-0.3;
    elseif t(i)>=-0.5+ t1&t(i)<=0.5+ t1
        f4(i)=0.3;
    elseif t(i)>=0.5+ t1&t(i)<=1.5+ t1
        f4(i)=-0.3;
    end
end
figure
subplot(5,1,1)
plot(t,f); grid on
subplot(5,1,2)
plot(t,f1); grid on
subplot(5,1,3)
plot(t,f2); grid on
subplot(5,1,4)
plot(t,f3); grid on
subplot(5,1,5)
plot(t,f4)
grid on
hold off

three_in_one =  + f1+ f2

five_in_one = f + f1+ f2 + f3+ + f4;

figure

subplot(2,1,1)
plot(t,three_in_one); grid on
subplot(2,1,2)
plot(t,five_in_one)



P-39 教材P-14倒數第二段
正弦波有效值的平方是其峰值二次方的一半,注意,是有效值。
推導:
對於任意一個正弦波,
周期為\(T\)
有效值\(I_{e}\)
峰值(最大值)\(I_{m}\)
則其瞬時電流值為\(I=I_{m}\sin (\omega t)\)
瞬時熱功率為\(dP=I^{2}R=I_{m}^{2}\sin^{2}(\omega t)R\)
\(\begin{aligned} Q &=\int dP dt \\ & =I_{m}^{2}R \int \sin^{2}(\omega t)dt \\ & = I_{m}^{2}R \int \frac{1}{2} \left ( 1-\cos(2\omega t)\right )dt \\ & = \frac{1}{2} I_{m}^{2}R \int (1-\cos(2\omega t)) dt \\ & = \frac{1}{2} I_{m}^{2}R \left ( t|_{0}^{T}- \frac{1}{2\omega}\sin (2\omega t)|_{0}^{T} \right )\\ & = \frac{1}{2} I_{m}^{2}R \left [ (T-0) - \frac{1}{2\omega}\left ( \sin(2\omega T) - \sin(2\omega 0) \right ) \right ]\\ & = \frac{1}{2} I_{m}^{2}R\left [ T - \frac{1}{2\omega} (0-0) \right ] \\ & = \frac{1}{2} I_{m}^{2}RT \end{aligned}\)
根據能量守恆定律,該周期\(T\)內,產生的熱量相同
\(\begin{aligned} Q_{equal} &= Q\\ I_{e}^{2}RT &= \frac{1}{2}I_{m}^{2}RT \\ I_{e}^{2} &= \frac{1}{2}I_{m}^{2} \end{aligned}\)
該句話得證。

P-40
公式(1-38)
根據P-39,余弦定理合成矢量\(F_{sr}\),對角度\(\varphi\)全微分,即可得。

P-41
公式(1-39)下面的關系式,是正弦定理的推論
\(\frac{F_{sr}}{\sin \varphi_{sr}} = \frac{F_{s}}{\sin \varphi_{s}}=\frac{F_{r}}{\sin \varphi_{r}}\). 注:\(\sin \varphi _{sr} = \sin(\pi-\varphi _{sr})\),補角正弦值相等。

P-42
公式(1-42)
\(B_{av}=\frac{2}{\pi}B = \frac{2}{\pi}\mu_{0}H=\frac{2\mu_{0}}{\pi g}F_{sr}\)
\(B_{av}=\frac{2}{\pi}B\)
正弦波的平均值,我們只求\([0 ~ \pi]\)半個周期的平局值,時間長度為\(\pi\),對於幅值為\(B\)的正弦波,其瞬時值為 \(B\sin t\)
\(\begin{aligned} B_{av} &= \frac{B_{all}}{T} \\ &=\frac{\int_{0}^{\pi}B \sin tdt}{\pi}\\ &=\frac{B}{\pi}\int_{0}^{\pi}\sin tdt \\ &= \frac{B}{\pi} \left( -\cos t\Large|_{0}^{\pi} \right) \\ & = \frac{2B}{\pi} \end{aligned}\)

\(B_{av}=\frac{2}{\pi}B = \frac{2}{\pi}\mu_{0}H\)
參考公式(1-4)

\(B_{av}=\frac{2}{\pi}B = \frac{2}{\pi}\mu_{0}H=\frac{2\mu_{0}}{\pi g}F_{sr}\)
參考公式(1-6)

第二章

第三節

高等代數里面的常用積分公式表
\(\int \frac{1}{x}dx = \ln |x| +c\)
公式(2-12)
\(\begin{aligned} \frac{\alpha_{e}-\alpha_{L}}{\frac{GD^{2}}{375}}dt &=\frac{d\Delta n}{\Delta n} ,(K=\frac{375}{GD^{2}}) \\ \frac{\alpha_{e}-\alpha_{L}}{\frac{1}{K}}dt &=\frac{d\Delta n}{\Delta n}\\ K(\alpha_{e}-\alpha_{L}) dt &=\frac{d\Delta n}{\Delta n}\\ \int K(\alpha_{e}-\alpha_{L}) dt &=\int \frac{d\Delta n}{\Delta n}\\ K(\alpha_{e}-\alpha_{L}) \int 1 dt &=\int \frac{1}{\Delta n}d\Delta n \\ K(\alpha_{e}-\alpha_{L}) t &= \ln |\Delta n| + c \\ e^{K(\alpha_{e}-\alpha_{L}) t} &= e^{\ln |\Delta n| + c} \\ e^{K(\alpha_{e}-\alpha_{L}) t} &= e^{\ln |\Delta n|} e^{c} \\ e^{-c} e^{K(\alpha_{e}-\alpha_{L}) t} &= e^{\ln |\Delta n|}, (C=e^{-c})\\ Ce^{K(\alpha_{e}-\alpha_{L}) t} &= \Delta n \\ \end{aligned}\)
此時求\(C\)值,帶入\(t=0\)初始值\(\Delta n =\Delta n_{\rm st}\)
\(\begin{aligned} \Delta n &= Ce^{K(\alpha_{e}-\alpha_{L}) t},t=0 \\ \Delta n &= Ce^{K(\alpha_{e}-\alpha_{L}) 0} \\ \Delta n &= Ce^{0} \\ \Delta n &= C ,\Delta n = n_{\rm st}\\ & \rightarrow C = n_{\rm st} \\ & \rightarrow \Delta n = Ce^{K(\alpha_{e}-\alpha_{L}) t} \\ & \rightarrow \Delta n = n_{\rm st} e^{K(\alpha_{e}-\alpha_{L}) t} \end{aligned}\)

第三章 電力拖動系統的動力學基礎

第一節 直流電機的基本原理和結構

P-4,視頻演示
基本講解
進階視頻

\(T_{e}=C_{T}\Phi I_{a}\)\(C_{T}\)是與電機有關的常數;\(I_{a}\)是轉子電流。

P-10 槽楔(xie):封槽口,壓緊絕緣紙及線圈,防止松脫。

第三節

圖3-14
\(\int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) e^{iwt}= \int_{-\frac{T}{2}}^{\frac{T}{2}}f(t)\cos(wt)dt + i \int_{-\frac{T}{2}}^{\frac{T}{2}}f(t)\sin(wt)dt\)
該函數為奇函數
This function is an odd function with \(T=2 \pi\). Thus, the \(\cos\) part \(a_{n}\) turns to zero. \(b_{0}=\frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}f(t)dt\)
the \(\sin\) part comes as:
\(\begin{aligned} b_{n} &=\frac{2}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}f(t)\sin(wt)dt \\ &=\frac{2}{T}* 4*\int_{0}^{\frac{T}{4}}f(t)\sin(wt)dt \leftarrow f(t)=\frac{F_{a}}{ \frac{T}{4}} \cdot t \\ &= \frac{2}{T}* 4*\frac{F_{a}}{ \frac{T}{4}} \int_{0}^{\frac{T}{4}}t\sin(wt)dt \\ &=\frac{32}{T^{2}}F_{a} \int_{0}^{\frac{T}{4}}t\sin(wt)dt \leftarrow T=2\pi\\ &=\frac{8}{\pi^{2}}F_{a}\int_{0}^{\frac{T}{4}}t\sin(wt)dt \leftarrow w=\frac{2\pi}{T}=1\\ &=\frac{8}{\pi^{2}} F_{a}\int_{0}^{\frac{T}{4}}t\sin(t)dt \\ &=\frac{8}{\pi^{2}}F_{a} \left [ -t\cos t + \sin t \right ] \Large |_{0}^{\frac{\pi}{2}} \\ & = \frac{8}{\pi^{2}}F_{a} \end{aligned}\)
with
\(\begin{aligned} \int t \sin t dt & = - \int t d\cos t \\ & = -t \cos t + \int \cos t dt \\ &= -t \cos t + \sin t + C \end{aligned}\)

第四章

第一節他勵直流電動機的機械特性

P-5 $T_{st} $ 是啟動電流

第三節 例題4-2 第二問

拖動電機采用很功率負載,采用弱磁調速時,功率恆定,電樞電流不變。有
\(\begin{aligned} P_{L}&=P_{x}\\ T_{e}w&=T_{x}w_{x}\rightarrow T_{e}=C_{T}\Phi I_{a},w=\frac{2\pi}{60}n \\ C_{T}\Phi I_{a}*\frac{2\pi}{60}n_{N} &= C_{T}\Phi_{x} I_{a}*\frac{2\pi}{60}n_{x}\\ \Phi n_{N}& = \Phi_{x}n_{x}\rightarrow \Phi_{x}=\frac{1}{3}\Phi\\ \Phi n_{N}& = \frac{1}{3}\Phi n_{x}\\ 3 n_{N}& = n_{x} \end{aligned}\)


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM