k8s配置alertmanager發送報警到qq郵箱
一、Prometheus報警處理流程
1)Prometheus Server監控目標主機上暴露的http接口(這里假設接口A),通過Promethes配置的'scrape_interval
'定義的時間間隔,定期采集目標主機上監控數據。
2)當接口A不可用的時候,Server端會持續的嘗試從接口中取數據,直到"scrape_timeout
"時間后停止嘗試。這時候把接口的狀態變為“DOWN
”。
3)Prometheus同時根據配置的"evaluation_interval
"的時間間隔,定期(默認1min)的對Alert Rule
進行評估;當到達評估周期的時候,發現接口A為DOWN,即UP=0
為真,激活Alert,進入“PENDING
”狀態,並記錄當前active的時間;
4)當下一個alert rule的評估周期到來的時候,發現UP=0繼續為真,然后判斷警報Active的時間是否已經超出rule里的‘for
’ 持續時間,如果未超出,則進入下一個評估周期;如果時間超出,則alert的狀態變為“FIRING
”;同時調用Alertmanager接口,發送相關報警數據。
5)AlertManager收到報警數據后,會將警報信息進行分組,然后根據alertmanager配置的“group_wait
”時間先進行等待。等wait時間過后再發送報警信息。
6)屬於同一個Alert Group的警報,在等待的過程中可能進入新的alert,如果之前的報警已經成功發出,那么間隔“group_interval”的時間間隔后再重新發送報警信息。比如配置的是郵件報警,那么同屬一個group的報警信息會匯總在一個郵件里進行發送。
7)如果Alert Group里的警報一直沒發生變化並且已經成功發送,等待‘repeat_interval
’時間間隔之后再重復發送相同的報警郵件;如果之前的警報沒有成功發送,則相當於觸發第6條條件,則需要等待group_interval時間間隔后重復發送。
8)同時最后至於警報信息具體發給誰,滿足什么樣的條件下指定警報接收人,設置不同報警發送頻率,這里有alertmanager的route路由規則進行配置。
二、Prometheus及Alertmanager配置
2.1、配置alertmanager及告警規則
1)創建alertmanager配置文件
[root@k8s-master1 prometheus]# cat alertmanager-cm.yaml
kind: ConfigMap
apiVersion: v1
metadata:
name: alertmanager
namespace: monitor-sa
data:
alertmanager.yml: |-
global:
resolve_timeout: 1m
smtp_smarthost: 'smtp.163.com:25'
smtp_from: '18665870472@163.com'
smtp_auth_username: '18665870472'
smtp_auth_password: 'GGCTEDQDVLKPCIID'
smtp_require_tls: false
route: #用於設置告警的分發策略
group_by: [alertname] # 采用哪個標簽來作為分組依據
group_wait: 10s # 組告警等待時間。也就是告警產生后等待10s,如果有同組告警一起發出
group_interval: 10s # 上下兩組發送告警的間隔時間
repeat_interval: 10m # 重復發送告警的時間,減少相同郵件的發送頻率,默認是1h
receiver: default-receiver #定義誰來收告警
receivers:
- name: 'default-receiver'
email_configs:
- to: '352972405@qq.com'
send_resolved: true
[root@k8s-master1 prometheus]# kubectl apply -f alertmanager-cm.yaml
configmap/alertmanager created
2)創建prometheus和告警規則配置文件
[root@k8s-master1 prometheus]# cat prometheus-alertmanager-cfg.yaml
kind: ConfigMap
apiVersion: v1
metadata:
labels:
app: prometheus
name: prometheus-config
namespace: monitor-sa
data:
prometheus.yml: |
rule_files:
- /etc/prometheus/rules.yml
alerting:
alertmanagers:
- static_configs:
- targets: ["localhost:9093"]
global:
scrape_interval: 15s
scrape_timeout: 10s
evaluation_interval: 1m
scrape_configs:
- job_name: 'kubernetes-node'
kubernetes_sd_configs:
- role: node
relabel_configs:
- source_labels: [__address__]
regex: '(.*):10250'
replacement: '${1}:9100'
target_label: __address__
action: replace
- action: labelmap
regex: __meta_kubernetes_node_label_(.+)
- job_name: 'kubernetes-node-cadvisor'
kubernetes_sd_configs:
- role: node
scheme: https
tls_config:
ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
relabel_configs:
- action: labelmap
regex: __meta_kubernetes_node_label_(.+)
- target_label: __address__
replacement: kubernetes.default.svc:443
- source_labels: [__meta_kubernetes_node_name]
regex: (.+)
target_label: __metrics_path__
replacement: /api/v1/nodes/${1}/proxy/metrics/cadvisor
- job_name: 'kubernetes-apiserver'
kubernetes_sd_configs:
- role: endpoints
scheme: https
tls_config:
ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
relabel_configs:
- source_labels: [__meta_kubernetes_namespace, __meta_kubernetes_service_name, __meta_kubernetes_endpoint_port_name]
action: keep
regex: default;kubernetes;https
- job_name: 'kubernetes-service-endpoints'
kubernetes_sd_configs:
- role: endpoints
relabel_configs:
- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scrape]
action: keep
regex: true
- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scheme]
action: replace
target_label: __scheme__
regex: (https?)
- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_path]
action: replace
target_label: __metrics_path__
regex: (.+)
- source_labels: [__address__, __meta_kubernetes_service_annotation_prometheus_io_port]
action: replace
target_label: __address__
regex: ([^:]+)(?::\d+)?;(\d+)
replacement: $1:$2
- action: labelmap
regex: __meta_kubernetes_service_label_(.+)
- source_labels: [__meta_kubernetes_namespace]
action: replace
target_label: kubernetes_namespace
- source_labels: [__meta_kubernetes_service_name]
action: replace
target_label: kubernetes_name
- job_name: 'kubernetes-pods'
kubernetes_sd_configs:
- role: pod
relabel_configs:
- action: keep
regex: true
source_labels:
- __meta_kubernetes_pod_annotation_prometheus_io_scrape
- action: replace
regex: (.+)
source_labels:
- __meta_kubernetes_pod_annotation_prometheus_io_path
target_label: __metrics_path__
- action: replace
regex: ([^:]+)(?::\d+)?;(\d+)
replacement: $1:$2
source_labels:
- __address__
- __meta_kubernetes_pod_annotation_prometheus_io_port
target_label: __address__
- action: labelmap
regex: __meta_kubernetes_pod_label_(.+)
- action: replace
source_labels:
- __meta_kubernetes_namespace
target_label: kubernetes_namespace
- action: replace
source_labels:
- __meta_kubernetes_pod_name
target_label: kubernetes_pod_name
- job_name: 'kubernetes-schedule'
scrape_interval: 5s
static_configs:
- targets: ['192.168.40.180:10251']
- job_name: 'kubernetes-controller-manager'
scrape_interval: 5s
static_configs:
- targets: ['192.168.40.180:10252']
- job_name: 'kubernetes-kube-proxy'
scrape_interval: 5s
static_configs:
- targets: ['192.168.40.180:10249','192.168.40.181:10249','192.168.40.182:10249']
- job_name: 'kubernetes-etcd'
scheme: https
tls_config:
ca_file: /var/run/secrets/kubernetes.io/k8s-certs/etcd/ca.crt
cert_file: /var/run/secrets/kubernetes.io/k8s-certs/etcd/server.crt
key_file: /var/run/secrets/kubernetes.io/k8s-certs/etcd/server.key
scrape_interval: 5s
static_configs:
- targets: ['192.168.40.180:2379']
rules.yml: |
groups:
- name: example
rules:
- alert: kube-proxy的cpu使用率大於80%
expr: rate(process_cpu_seconds_total{job=~"kubernetes-kube-proxy"}[1m]) * 100 > 80
for: 2s
labels:
severity: warnning
annotations:
description: "{{$labels.instance}}的{{$labels.job}}組件的cpu使用率超過80%"
- alert: kube-proxy的cpu使用率大於90%
expr: rate(process_cpu_seconds_total{job=~"kubernetes-kube-proxy"}[1m]) * 100 > 90
for: 2s
labels:
severity: critical
annotations:
description: "{{$labels.instance}}的{{$labels.job}}組件的cpu使用率超過90%"
- alert: scheduler的cpu使用率大於80%
expr: rate(process_cpu_seconds_total{job=~"kubernetes-schedule"}[1m]) * 100 > 80
for: 2s
labels:
severity: warnning
annotations:
description: "{{$labels.instance}}的{{$labels.job}}組件的cpu使用率超過80%"
- alert: scheduler的cpu使用率大於90%
expr: rate(process_cpu_seconds_total{job=~"kubernetes-schedule"}[1m]) * 100 > 90
for: 2s
labels:
severity: critical
annotations:
description: "{{$labels.instance}}的{{$labels.job}}組件的cpu使用率超過90%"
- alert: controller-manager的cpu使用率大於80%
expr: rate(process_cpu_seconds_total{job=~"kubernetes-controller-manager"}[1m]) * 100 > 80
for: 2s
labels:
severity: warnning
annotations:
description: "{{$labels.instance}}的{{$labels.job}}組件的cpu使用率超過80%"
- alert: controller-manager的cpu使用率大於90%
expr: rate(process_cpu_seconds_total{job=~"kubernetes-controller-manager"}[1m]) * 100 > 0
for: 2s
labels:
severity: critical
annotations:
description: "{{$labels.instance}}的{{$labels.job}}組件的cpu使用率超過90%"
- alert: apiserver的cpu使用率大於80%
expr: rate(process_cpu_seconds_total{job=~"kubernetes-apiserver"}[1m]) * 100 > 80
for: 2s
labels:
severity: warnning
annotations:
description: "{{$labels.instance}}的{{$labels.job}}組件的cpu使用率超過80%"
- alert: apiserver的cpu使用率大於90%
expr: rate(process_cpu_seconds_total{job=~"kubernetes-apiserver"}[1m]) * 100 > 90
for: 2s
labels:
severity: critical
annotations:
description: "{{$labels.instance}}的{{$labels.job}}組件的cpu使用率超過90%"
- alert: etcd的cpu使用率大於80%
expr: rate(process_cpu_seconds_total{job=~"kubernetes-etcd"}[1m]) * 100 > 80
for: 2s
labels:
severity: warnning
annotations:
description: "{{$labels.instance}}的{{$labels.job}}組件的cpu使用率超過80%"
- alert: etcd的cpu使用率大於90%
expr: rate(process_cpu_seconds_total{job=~"kubernetes-etcd"}[1m]) * 100 > 90
for: 2s
labels:
severity: critical
annotations:
description: "{{$labels.instance}}的{{$labels.job}}組件的cpu使用率超過90%"
- alert: kube-state-metrics的cpu使用率大於80%
expr: rate(process_cpu_seconds_total{k8s_app=~"kube-state-metrics"}[1m]) * 100 > 80
for: 2s
labels:
severity: warnning
annotations:
description: "{{$labels.instance}}的{{$labels.k8s_app}}組件的cpu使用率超過80%"
value: "{{ $value }}%"
threshold: "80%"
- alert: kube-state-metrics的cpu使用率大於90%
expr: rate(process_cpu_seconds_total{k8s_app=~"kube-state-metrics"}[1m]) * 100 > 0
for: 2s
labels:
severity: critical
annotations:
description: "{{$labels.instance}}的{{$labels.k8s_app}}組件的cpu使用率超過90%"
value: "{{ $value }}%"
threshold: "90%"
- alert: coredns的cpu使用率大於80%
expr: rate(process_cpu_seconds_total{k8s_app=~"kube-dns"}[1m]) * 100 > 80
for: 2s
labels:
severity: warnning
annotations:
description: "{{$labels.instance}}的{{$labels.k8s_app}}組件的cpu使用率超過80%"
value: "{{ $value }}%"
threshold: "80%"
- alert: coredns的cpu使用率大於90%
expr: rate(process_cpu_seconds_total{k8s_app=~"kube-dns"}[1m]) * 100 > 90
for: 2s
labels:
severity: critical
annotations:
description: "{{$labels.instance}}的{{$labels.k8s_app}}組件的cpu使用率超過90%"
value: "{{ $value }}%"
threshold: "90%"
- alert: kube-proxy打開句柄數>600
expr: process_open_fds{job=~"kubernetes-kube-proxy"} > 600
for: 2s
labels:
severity: warnning
annotations:
description: "{{$labels.instance}}的{{$labels.job}}打開句柄數>600"
value: "{{ $value }}"
- alert: kube-proxy打開句柄數>1000
expr: process_open_fds{job=~"kubernetes-kube-proxy"} > 1000
for: 2s
labels:
severity: critical
annotations:
description: "{{$labels.instance}}的{{$labels.job}}打開句柄數>1000"
value: "{{ $value }}"
- alert: kubernetes-schedule打開句柄數>600
expr: process_open_fds{job=~"kubernetes-schedule"} > 600
for: 2s
labels:
severity: warnning
annotations:
description: "{{$labels.instance}}的{{$labels.job}}打開句柄數>600"
value: "{{ $value }}"
- alert: kubernetes-schedule打開句柄數>1000
expr: process_open_fds{job=~"kubernetes-schedule"} > 1000
for: 2s
labels:
severity: critical
annotations:
description: "{{$labels.instance}}的{{$labels.job}}打開句柄數>1000"
value: "{{ $value }}"
- alert: kubernetes-controller-manager打開句柄數>600
expr: process_open_fds{job=~"kubernetes-controller-manager"} > 600
for: 2s
labels:
severity: warnning
annotations:
description: "{{$labels.instance}}的{{$labels.job}}打開句柄數>600"
value: "{{ $value }}"
- alert: kubernetes-controller-manager打開句柄數>1000
expr: process_open_fds{job=~"kubernetes-controller-manager"} > 1000
for: 2s
labels:
severity: critical
annotations:
description: "{{$labels.instance}}的{{$labels.job}}打開句柄數>1000"
value: "{{ $value }}"
- alert: kubernetes-apiserver打開句柄數>600
expr: process_open_fds{job=~"kubernetes-apiserver"} > 600
for: 2s
labels:
severity: warnning
annotations:
description: "{{$labels.instance}}的{{$labels.job}}打開句柄數>600"
value: "{{ $value }}"
- alert: kubernetes-apiserver打開句柄數>1000
expr: process_open_fds{job=~"kubernetes-apiserver"} > 1000
for: 2s
labels:
severity: critical
annotations:
description: "{{$labels.instance}}的{{$labels.job}}打開句柄數>1000"
value: "{{ $value }}"
- alert: kubernetes-etcd打開句柄數>600
expr: process_open_fds{job=~"kubernetes-etcd"} > 600
for: 2s
labels:
severity: warnning
annotations:
description: "{{$labels.instance}}的{{$labels.job}}打開句柄數>600"
value: "{{ $value }}"
- alert: kubernetes-etcd打開句柄數>1000
expr: process_open_fds{job=~"kubernetes-etcd"} > 1000
for: 2s
labels:
severity: critical
annotations:
description: "{{$labels.instance}}的{{$labels.job}}打開句柄數>1000"
value: "{{ $value }}"
- alert: coredns
expr: process_open_fds{k8s_app=~"kube-dns"} > 600
for: 2s
labels:
severity: warnning
annotations:
description: "插件{{$labels.k8s_app}}({{$labels.instance}}): 打開句柄數超過600"
value: "{{ $value }}"
- alert: coredns
expr: process_open_fds{k8s_app=~"kube-dns"} > 1000
for: 2s
labels:
severity: critical
annotations:
description: "插件{{$labels.k8s_app}}({{$labels.instance}}): 打開句柄數超過1000"
value: "{{ $value }}"
- alert: kube-proxy
expr: process_virtual_memory_bytes{job=~"kubernetes-kube-proxy"} > 2000000000
for: 2s
labels:
severity: warnning
annotations:
description: "組件{{$labels.job}}({{$labels.instance}}): 使用虛擬內存超過2G"
value: "{{ $value }}"
- alert: scheduler
expr: process_virtual_memory_bytes{job=~"kubernetes-schedule"} > 2000000000
for: 2s
labels:
severity: warnning
annotations:
description: "組件{{$labels.job}}({{$labels.instance}}): 使用虛擬內存超過2G"
value: "{{ $value }}"
- alert: kubernetes-controller-manager
expr: process_virtual_memory_bytes{job=~"kubernetes-controller-manager"} > 2000000000
for: 2s
labels:
severity: warnning
annotations:
description: "組件{{$labels.job}}({{$labels.instance}}): 使用虛擬內存超過2G"
value: "{{ $value }}"
- alert: kubernetes-apiserver
expr: process_virtual_memory_bytes{job=~"kubernetes-apiserver"} > 2000000000
for: 2s
labels:
severity: warnning
annotations:
description: "組件{{$labels.job}}({{$labels.instance}}): 使用虛擬內存超過2G"
value: "{{ $value }}"
- alert: kubernetes-etcd
expr: process_virtual_memory_bytes{job=~"kubernetes-etcd"} > 2000000000
for: 2s
labels:
severity: warnning
annotations:
description: "組件{{$labels.job}}({{$labels.instance}}): 使用虛擬內存超過2G"
value: "{{ $value }}"
- alert: kube-dns
expr: process_virtual_memory_bytes{k8s_app=~"kube-dns"} > 2000000000
for: 2s
labels:
severity: warnning
annotations:
description: "插件{{$labels.k8s_app}}({{$labels.instance}}): 使用虛擬內存超過2G"
value: "{{ $value }}"
- alert: HttpRequestsAvg
expr: sum(rate(rest_client_requests_total{job=~"kubernetes-kube-proxy|kubernetes-kubelet|kubernetes-schedule|kubernetes-control-manager|kubernetes-apiservers"}[1m])) > 1000
for: 2s
labels:
team: admin
annotations:
description: "組件{{$labels.job}}({{$labels.instance}}): TPS超過1000"
value: "{{ $value }}"
threshold: "1000"
- alert: Pod_restarts
expr: kube_pod_container_status_restarts_total{namespace=~"kube-system|default|monitor-sa"} > 0
for: 2s
labels:
severity: warnning
annotations:
description: "在{{$labels.namespace}}名稱空間下發現{{$labels.pod}}這個pod下的容器{{$labels.container}}被重啟,這個監控指標是由{{$labels.instance}}采集的"
value: "{{ $value }}"
threshold: "0"
- alert: Pod_waiting
expr: kube_pod_container_status_waiting_reason{namespace=~"kube-system|default"} == 1
for: 2s
labels:
team: admin
annotations:
description: "空間{{$labels.namespace}}({{$labels.instance}}): 發現{{$labels.pod}}下的{{$labels.container}}啟動異常等待中"
value: "{{ $value }}"
threshold: "1"
- alert: Pod_terminated
expr: kube_pod_container_status_terminated_reason{namespace=~"kube-system|default|monitor-sa"} == 1
for: 2s
labels:
team: admin
annotations:
description: "空間{{$labels.namespace}}({{$labels.instance}}): 發現{{$labels.pod}}下的{{$labels.container}}被刪除"
value: "{{ $value }}"
threshold: "1"
- alert: Etcd_leader
expr: etcd_server_has_leader{job="kubernetes-etcd"} == 0
for: 2s
labels:
team: admin
annotations:
description: "組件{{$labels.job}}({{$labels.instance}}): 當前沒有leader"
value: "{{ $value }}"
threshold: "0"
- alert: Etcd_leader_changes
expr: rate(etcd_server_leader_changes_seen_total{job="kubernetes-etcd"}[1m]) > 0
for: 2s
labels:
team: admin
annotations:
description: "組件{{$labels.job}}({{$labels.instance}}): 當前leader已發生改變"
value: "{{ $value }}"
threshold: "0"
- alert: Etcd_failed
expr: rate(etcd_server_proposals_failed_total{job="kubernetes-etcd"}[1m]) > 0
for: 2s
labels:
team: admin
annotations:
description: "組件{{$labels.job}}({{$labels.instance}}): 服務失敗"
value: "{{ $value }}"
threshold: "0"
- alert: Etcd_db_total_size
expr: etcd_debugging_mvcc_db_total_size_in_bytes{job="kubernetes-etcd"} > 10000000000
for: 2s
labels:
team: admin
annotations:
description: "組件{{$labels.job}}({{$labels.instance}}):db空間超過10G"
value: "{{ $value }}"
threshold: "10G"
- alert: Endpoint_ready
expr: kube_endpoint_address_not_ready{namespace=~"kube-system|default"} == 1
for: 2s
labels:
team: admin
annotations:
description: "空間{{$labels.namespace}}({{$labels.instance}}): 發現{{$labels.endpoint}}不可用"
value: "{{ $value }}"
threshold: "1"
- name: 物理節點狀態-監控告警
rules:
- alert: 物理節點cpu使用率
expr: 100-avg(irate(node_cpu_seconds_total{mode="idle"}[5m])) by(instance)*100 > 90
for: 2s
labels:
severity: ccritical
annotations:
summary: "{{ $labels.instance }}cpu使用率過高"
description: "{{ $labels.instance }}的cpu使用率超過90%,當前使用率[{{ $value }}],需要排查處理"
- alert: 物理節點內存使用率
expr: (node_memory_MemTotal_bytes - (node_memory_MemFree_bytes + node_memory_Buffers_bytes + node_memory_Cached_bytes)) / node_memory_MemTotal_bytes * 100 > 90
for: 2s
labels:
severity: critical
annotations:
summary: "{{ $labels.instance }}內存使用率過高"
description: "{{ $labels.instance }}的內存使用率超過90%,當前使用率[{{ $value }}],需要排查處理"
- alert: InstanceDown
expr: up == 0
for: 2s
labels:
severity: critical
annotations:
summary: "{{ $labels.instance }}: 服務器宕機"
description: "{{ $labels.instance }}: 服務器延時超過2分鍾"
- alert: 物理節點磁盤的IO性能
expr: 100-(avg(irate(node_disk_io_time_seconds_total[1m])) by(instance)* 100) < 60
for: 2s
labels:
severity: critical
annotations:
summary: "{{$labels.mountpoint}} 流入磁盤IO使用率過高!"
description: "{{$labels.mountpoint }} 流入磁盤IO大於60%(目前使用:{{$value}})"
- alert: 入網流量帶寬
expr: ((sum(rate (node_network_receive_bytes_total{device!~'tap.*|veth.*|br.*|docker.*|virbr*|lo*'}[5m])) by (instance)) / 100) > 102400
for: 2s
labels:
severity: critical
annotations:
summary: "{{$labels.mountpoint}} 流入網絡帶寬過高!"
description: "{{$labels.mountpoint }}流入網絡帶寬持續5分鍾高於100M. RX帶寬使用率{{$value}}"
- alert: 出網流量帶寬
expr: ((sum(rate (node_network_transmit_bytes_total{device!~'tap.*|veth.*|br.*|docker.*|virbr*|lo*'}[5m])) by (instance)) / 100) > 102400
for: 2s
labels:
severity: critical
annotations:
summary: "{{$labels.mountpoint}} 流出網絡帶寬過高!"
description: "{{$labels.mountpoint }}流出網絡帶寬持續5分鍾高於100M. RX帶寬使用率{{$value}}"
- alert: TCP會話
expr: node_netstat_Tcp_CurrEstab > 1000
for: 2s
labels:
severity: critical
annotations:
summary: "{{$labels.mountpoint}} TCP_ESTABLISHED過高!"
description: "{{$labels.mountpoint }} TCP_ESTABLISHED大於1000%(目前使用:{{$value}}%)"
- alert: 磁盤容量
expr: 100-(node_filesystem_free_bytes{fstype=~"ext4|xfs"}/node_filesystem_size_bytes {fstype=~"ext4|xfs"}*100) > 80
for: 2s
labels:
severity: critical
annotations:
summary: "{{$labels.mountpoint}} 磁盤分區使用率過高!"
description: "{{$labels.mountpoint }} 磁盤分區使用大於80%(目前使用:{{$value}}%)"
# 刪除之前的配置
[root@k8s-master1 prometheus]# kubectl delete -f prometheus-cfg.yaml
configmap "prometheus-config" deleted
# 更新配置
[root@k8s-master1 prometheus]# kubectl apply -f prometheus-alertmanager-cfg.yaml
configmap/prometheus-config created
[root@k8s-master1 prometheus]# kubectl get cm -n monitor-sa
NAME DATA AGE
kube-root-ca.crt 1 14h
prometheus-config 2 29s
3)安裝prometheus和alertmanager
[root@k8s-master1 prometheus]# cat prometheus-alertmanager-deploy.yaml
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: prometheus-server
namespace: monitor-sa
labels:
app: prometheus
spec:
replicas: 1
selector:
matchLabels:
app: prometheus
component: server
#matchExpressions:
#- {key: app, operator: In, values: [prometheus]}
#- {key: component, operator: In, values: [server]}
template:
metadata:
labels:
app: prometheus
component: server
annotations:
prometheus.io/scrape: 'false'
spec:
nodeName: k8s-node1
serviceAccountName: monitor
containers:
- name: prometheus
image: prom/prometheus:v2.2.1
imagePullPolicy: IfNotPresent
command:
- "/bin/prometheus"
args:
- "--config.file=/etc/prometheus/prometheus.yml"
- "--storage.tsdb.path=/prometheus"
- "--storage.tsdb.retention=24h"
- "--web.enable-lifecycle"
ports:
- containerPort: 9090
protocol: TCP
volumeMounts:
- mountPath: /etc/prometheus
name: prometheus-config
- mountPath: /prometheus/
name: prometheus-storage-volume
- name: k8s-certs
mountPath: /var/run/secrets/kubernetes.io/k8s-certs/etcd/
- name: localtime
mountPath: /etc/localtime
- name: alertmanager
image: prom/alertmanager:v0.14.0
imagePullPolicy: IfNotPresent
args:
- "--config.file=/etc/alertmanager/alertmanager.yml"
- "--log.level=debug"
ports:
- containerPort: 9093
protocol: TCP
name: alertmanager
volumeMounts:
- name: alertmanager-config
mountPath: /etc/alertmanager
- name: alertmanager-storage
mountPath: /alertmanager
- name: localtime
mountPath: /etc/localtime
volumes:
- name: prometheus-config
configMap:
name: prometheus-config
- name: prometheus-storage-volume
hostPath:
path: /data
type: Directory
- name: k8s-certs
secret:
secretName: etcd-certs
- name: alertmanager-config
configMap:
name: alertmanager
- name: alertmanager-storage
hostPath:
path: /data/alertmanager
type: DirectoryOrCreate
- name: localtime
hostPath:
path: /usr/share/zoneinfo/Asia/Shanghai
# 生成一個etcd-certs,這個在部署prometheus需要
[root@k8s-master1 prometheus]# kubectl -n monitor-sa create secret generic etcd-certs --from-file=/etc/kubernetes/pki/etcd/server.key --from-file=/etc/kubernetes/pki/etcd/server.crt --from-file=/etc/kubernetes/pki/etcd/ca.crt
secret/etcd-certs created
# 更新資源清單yaml文件
[root@k8s-master1 prometheus]# kubectl delete -f prometheus-deploy.yaml
deployment.apps "prometheus-server" deleted
[root@k8s-master1 prometheus]# kubectl apply -f prometheus-alertmanager-deploy.yaml
deployment.apps/prometheus-server created
# 查看prometheus是否部署成功
[root@k8s-master1 prometheus]# kubectl get pods -n monitor-sa | grep prometheus
prometheus-server-76dd9f8dc6-w9fct 2/2 Running 0 32s
4)部署alertmanager的service,方便在瀏覽器訪問
[root@k8s-master1 prometheus]# cat alertmanager-svc.yaml
---
apiVersion: v1
kind: Service
metadata:
labels:
name: prometheus
kubernetes.io/cluster-service: 'true'
name: alertmanager
namespace: monitor-sa
spec:
ports:
- name: alertmanager
nodePort: 30066
port: 9093
protocol: TCP
targetPort: 9093
selector:
app: prometheus
sessionAffinity: None
type: NodePort
[root@k8s-master1 prometheus]# kubectl apply -f alertmanager-svc.yaml
service/alertmanager created
# 查看service在物理機映射的端口
[root@k8s-master1 prometheus]# kubectl get svc -n monitor-sa
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
alertmanager NodePort 10.102.118.253 <none> 9093:30066/TCP 41s
prometheus NodePort 10.99.104.223 <none> 9090:32367/TCP 13h
# 注意:上面可以看到prometheus的service在物理機映射的端口是32367,alertmanager的service在物理機映射的端口是30066
# 查看service在物理機映射的端口: http://192.168.40.180:30066/#/alerts
查看接收到的郵件報警:
查看prometheus的targets:
2.2、監控kube-scheduler
# 修改kube-scheduler的配置文件
[root@k8s-master1 prometheus]# vim /etc/kubernetes/manifests/kube-scheduler.yaml
# 修改如下內容
1)把--bind-address=127.0.0.1變成--bind-address=192.168.40.180 #192.168.40.180是k8s的控制節點k8s-master1的ip
2)把httpGet:字段下的hosts由127.0.0.1變成192.168.40.180(有兩處)
3)把—port=0刪除
# 重啟各個節點的kubelet
[root@k8s-node1 ~]# systemctl restart kubelet
[root@k8s-node2 ~]# systemctl restart kubelet
# 相應的端口已經被物理機監聽了
[root@k8s-master1 prometheus]# ss -antulp | grep :10251
tcp LISTEN 0 128 :::10251 :::* users:(("kube-scheduler",pid=36945,fd=7))
2.3、監控kube-controller-manager
# 修改kube-scheduler的配置文件
[root@k8s-master1 prometheus]# vim /etc/kubernetes/manifests/kube-controller-manager.yaml
# 修改如下內容
1)把--bind-address=127.0.0.1變成--bind-address=192.168.40.180 #192.168.40.180是k8s的控制節點k8s-master1的ip
2)把httpGet:字段下的hosts由127.0.0.1變成192.168.40.180(有兩處)
3)把—port=0刪除
# 重啟各個節點的kubelet
[root@k8s-node1 ~]# systemctl restart kubelet
[root@k8s-node2 ~]# systemctl restart kubelet
# 查看狀態
[root@k8s-master1 prometheus]# kubectl get cs
Warning: v1 ComponentStatus is deprecated in v1.19+
NAME STATUS MESSAGE ERROR
scheduler Healthy ok
controller-manager Healthy ok
etcd-0 Healthy {"health":"true"}
[root@k8s-master1 prometheus]# ss -antulp | grep :10252
tcp LISTEN 0 128 :::10252 :::* users:(("kube-controller",pid=41653,fd=7))
2.4、監控kube-proxy
# 因為kube-proxy默認端口10249是監聽在127.0.0.1上的,需要改成監聽到物理節點上,按如下方法修改,線上建議在安裝k8s的時候就做修改,這樣風險小一些
# 修改metricsBindAddress
[root@k8s-master1 prometheus]# kubectl edit configmap kube-proxy -n kube-system
metricsBindAddress: "0.0.0.0:10249"
# 重新啟動kube-proxy
[root@k8s-master1 prometheus]# kubectl get pods -n kube-system | grep kube-proxy |awk '{print $1}' | xargs kubectl delete pods -n kube-system
[root@k8s-master1 prometheus]# ss -antulp |grep :10249
tcp LISTEN 0 128 :::10249 :::* users:(("kube-proxy",pid=45896,fd=19))
2.5、alert查看
FIRING表示prometheus已經將告警發給alertmanager,在Alertmanager 中可以看到有一個 alert。 登錄到alertmanager web界面,瀏覽器輸入192.168.40.180:30066,顯示如下
2.6、配置文件更新
# 修改prometheus任何一個配置文件之后,可通過kubectl apply使配置生效,執行順序如下:
# 注意:生產不要這樣做
kubectl delete -f alertmanager-cm.yaml
kubectl apply -f alertmanager-cm.yaml
kubectl delete -f prometheus-alertmanager-cfg.yaml
kubectl apply -f prometheus-alertmanager-cfg.yaml
kubectl delete -f prometheus-alertmanager-deploy.yaml
kubectl apply -f prometheus-alertmanager-deploy.yaml