元學習——從MAML到MAML++
作者:凱魯嘎吉 - 博客園 http://www.cnblogs.com/kailugaji/
Few-shot learning領域最近有了實質性的進展。這些進步大多來自於將few-shot learning作為元學習問題。Model-Agnostic Meta-Learning (MAML)是目前利用元學習進行few-shot learning的最佳方法之一。MAML簡單,優雅,功能強大,但是它有很多問題,比如對神經網絡結構非常敏感,經常導致訓練時不穩定,需要費力的超參數搜索來穩定訓練和實現高泛化,並且在訓練和推理時間上都非常昂貴的計算。在文"How to train your MAML"中,對MAML進行了各種改進,不僅穩定了系統,而且大幅度提高了MAML的泛化性能、收斂速度和計算開銷。所提方法稱之為MAML++。本博文首先介紹什么是元學習,經典的Model-Agnostic Meta-Learning的定義與執行過程,進而說明MAML面臨的缺點與挑戰,針對這些問題,進行相應改進,從而得到MAML++。
1. Meta Learning (Learn to Learn)
2. Black-Box Adaption vs Optimization-Based Approach
3. MAML
MAML Computation Graph
4. MAML Problems
5. MAML++
MAML with Multi-Step Loss Computation Graph
6. 參考文獻
[1] Finn, C., Abbeel, P. & Levine, S. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks. ICML 2017. Code: https://github.com/cbfinn/maml, https://github.com/dragen1860/MAML-Pytorch
Finn個人主頁:https://ai.stanford.edu/~cbfinn/
[2] Antoniou, A., Edwards, H., & Storkey, A. How to train your MAML. ICLR 2019. Code: https://github.com/AntreasAntoniou/HowToTrainYourMAMLPytorch
[3] How to train your MAML: A step by step approach · BayesWatch https://www.bayeswatch.com/2018/11/30/HTYM/
[4] CS 330: Deep Multi-Task and Meta Learning http://web.stanford.edu/class/cs330/
[5] Meta-Learning: Learning to Learn Fast https://lilianweng.github.io/lil-log/2018/11/30/meta-learning.html