要遷移的項目為圖像壓縮算法https://github.com/ywz978020607/HESIC
1.自定義算子遷移--LowerBoundFunction類
為了能夠准確遷移底層封裝的類,需要詳細測試原版類以及遷移測試
pytorch中自定義的算子有torch.autograd.Function
import torch
import torch.nn as nn
class LowerBoundFunction(torch.autograd.Function):
"""Autograd function for the `LowerBound` operator.
"""
@staticmethod
def forward(ctx, input_, bound):
ctx.save_for_backward(input_, bound)
return torch.max(input_, bound)
@staticmethod
def backward(ctx, grad_output):
input_, bound = ctx.saved_tensors
pass_through_if = (input_ >= bound) | (grad_output < 0)
print(grad_output) #tensor([ 0., 2., 15.], grad_fn=<MulBackward0>)
print(pass_through_if)
print(pass_through_if.type(grad_output.dtype) * grad_output)
return pass_through_if.type(grad_output.dtype) * grad_output, None
if __name__=="__main__":
a = torch.Tensor([1,2,3])
b = torch.Tensor([0,1,5])
a.requires_grad_(True)
b.requires_grad_(True)
c = a*b
m = LowerBoundFunction.apply(a,b)
m.backward(c)
輸出為
tensor([ 0., 2., 15.], grad_fn=<MulBackward0>)
tensor([ True, True, False])
tensor([0., 2., 0.])
通過兩行print測試后發現,這個類用於阻斷梯度,有點類似Relu的感覺
而mindspore的自定義算子在昇騰、GPU、CPU下定義不同且過於復雜,咨詢hw工程師后,准備繼承nn.Cell並重載bprop函數實現,測試bprop反向梯度傳播如下
# https://gitee.com/mindspore/mindspore/blob/master/tests/ut/python/pynative_mode/test_hook.py#
import numpy as np
import pytest
import mindspore.nn as nn
import mindspore.ops.operations as P
from mindspore import context, Tensor, ParameterTuple
from mindspore.common.initializer import TruncatedNormal
from mindspore.nn import WithLossCell, Momentum
from mindspore.ops import composite as C
context.set_context(mode=context.PYNATIVE_MODE, device_target="CPU")
grad_all = C.GradOperation(get_all=True)
bprop_debug = False
class MulAdd(nn.Cell):
def __init__(self):
super(MulAdd, self).__init__()
def construct(self, x, y):
return 2 * x * x + y * y
def bprop(self, x, y, out, dout):
global bprop_debug
bprop_debug = True
print(x)
print(y)
print(out)
print(dout)
# [1 2 3]
# [2 3 5]
# [ 6 17 43]
# [1 1 1]
return dout, 2 * y
def test_custom_bprop():
mul_add = MulAdd()
mul_add.bprop_debug = True
x = Tensor(np.array([1, 2, 3]).astype(np.int32))
y = Tensor(np.array([2, 3, 5]).astype(np.int32))
ret = grad_all(mul_add)(x, y)
print(ret) #(Tensor(shape=[3], dtype=Int32, value= [1, 1, 1]), Tensor(shape=[3], dtype=Int32, value= [ 4, 6, 10]))
assert bprop_debug
##############
#ywz
test_custom_bprop()
print(bprop_debug)
測試通bprop重載的原理后,實現相應的類
import numpy as np
import pytest
import mindspore as msp
import mindspore.nn as nn
import mindspore.ops.operations as P
from mindspore import context, Tensor, ParameterTuple
from mindspore.common.initializer import TruncatedNormal
from mindspore.nn import WithLossCell, Momentum
from mindspore.ops import composite as C
context.set_context(mode=context.PYNATIVE_MODE, device_target="CPU")
class LowerBoundFunction(nn.Cell):
def __init__(self):
super(LowerBoundFunction, self).__init__()
def construct(self, input_, bound):
return msp.ops.maximum(input_,bound)
def bprop(self, input_, bound, out, dout): #dout是梯度 out是推理值
# pass_through_if = (input_ >= bound) | (dout < 0)
pass_through_if = ((input_ >= bound).astype(input_.dtype) + (dout < 0).astype(input_.dtype)).astype('Bool')
# print(pass_through_if)
# print(out) #out為construct結果 #pytorch此處是已經求完導的值,但msp中是正向推導的值
# print(dout) #dout貌似是梯度
# print("---")
print(pass_through_if.astype(dout.dtype) * dout)
return pass_through_if.astype(dout.dtype) * dout, pass_through_if.astype(dout.dtype) * dout #第二個用不上
if __name__=="__main__":
grad_all = C.GradOperation(get_all=True)
lowerboundfunc = LowerBoundFunction()
x = Tensor(np.array([1, 2, 3]).astype(np.int32))
y = Tensor(np.array([0, 1, 5]).astype(np.int32))
test = lowerboundfunc(x, y)
ret = grad_all(lowerboundfunc)(x, y)
# print(ret)
# print(lowerboundfunc)
# p = (x >= y)
# p.astype(x.dtype)
總結:pytorch的backward()函數更像黑盒子,梯度傳播計算都涵蓋在內,最終不顯式輸出;而msp的bprop重載時需要注意的點比較多,out是正向推理值,dout是梯度值。
參考:https://www.mindspore.cn/doc/api_python/zh-CN/r1.2/_modules/mindspore/nn/cell.html#Cell.cast_param