一 、算法介紹
左邊deep network,右邊FM,所以叫deepFM
包含兩個部分:
- Part1: FM(Factorization machines),因子分解機部分
在傳統的一階線性回歸之上,加了一個二次項,可以表達兩兩特征的相互關系。
這里的公式可以簡化,減少計算量,下圖來至於網絡。
- Part2: Deep部分
deep部分是多層dnn網絡。
二、算法實現
實現部分,用Keras實現一個DeepFM 和·清塵·《FM、FMM、DeepFM整理(pytorch)》
講的比較清楚,這里引用keras實現來說明。
整體的網絡結構:
特征編碼#
特征可以分為3類:
- 連續型field,比如數字類型特征
- 單值離散型特征,比如gender,可選為male、female
- 多值離散型,比如tag,可以有多個
連續型field,可以拼接到一起,dense數據。
單值,多值field進行Onehot后,可見單值離散field對應的獨熱向量只有一位取1,而多值離散field對應的獨熱向量有多於一位取1,表示該field可以同時取多個特征值。
| label | shop_score | gender=m | gender=f | interest=f | interest=c |
|---|---|---|---|---|---|
| 0 | 0.2 | 1 | 0 | 1 | 1 |
| 1 | 0.8 | 0 | 1 | 0 | 1 |
FM 部分#
先算 FM一次項:
- 連續型field 可以用Dense(1)層實現
- 單值離散型field 用Embedding(n,1), n是分類中值的個數
- 多值離散型field可以同時取多個特征值,為了batch training,必須對樣本進行補零padding。同樣可以用Embedding實現,因為有多個Embedding,可以取下平均值。
然后計算FM二次項,這里理解比較費勁一點。
·清塵·《FM、FMM、DeepFM整理(pytorch)》 深入淺出的講明白了這個過程,大家可以參見。
我們來看具體實現方面,這里的DeepFM模型CTR預估理論與實戰
講解更容易理解。
假設只有前面的C1和C2兩個Category的特征,詞典大小還是3和2。假設輸入還是C1=2,C2=2(下標從1開始),則Embedding之后為V2=[e21,e22,e23,e24]和V5=[e51,e52,e53,e54]。
因為xi和xj同時不為零才需要計算,所以上面的公式里需要計算的只有i=2和j=5的情況。因此:
擴展到多個,比如C1,C2,C3,需要算內積
怎么用用矩陣乘法一次計算出來呢?我們可以看看這個
對應的代碼就是
square_of_sum = tf.square(reduce_sum( concated_embeds_value, axis=1, keep_dims=True)) sum_of_square = reduce_sum( concated_embeds_value * concated_embeds_value, axis=1, keep_dims=True) cross_term = square_of_sum - sum_of_square cross_term = 0.5 * reduce_sum(cross_term, axis=2, keep_dims=False)
其中concated_embeds_value是拼接起來的embeds_value。
Deep部分#
DNN比較簡單,FM的輸入和DNN的輸入都是同一個group_embedding_dict。
三、使用movielens 來測試
下載ml-100k 數據集
wget http://files.grouplens.org/datasets/movielens/ml-100k.zip
unzip ml-100k.zip
安裝相關軟件包,sklearn,deepctr
導入包:
import pandas import pandas as pd import sklearn from sklearn.metrics import log_loss, roc_auc_score from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder from tensorflow.python.keras.preprocessing.sequence import pad_sequences import tensorflow as tf from tqdm import tqdm from deepctr.models import DeepFM from deepctr.feature_column import SparseFeat, VarLenSparseFeat, get_feature_names import numpy as np
讀取評分數據:
u_data = pd.read_csv("ml-100k/u.data", sep='\t', header=None) u_data.columns = ['user_id', 'movie_id', 'rating', 'timestamp']
有評分的設置為1,隨機采用未評分的
def neg_sample(u_data, neg_rate=1): # 全局隨機采樣 item_ids = u_data['movie_id'].unique() print('start neg sample') neg_data = [] # 負采樣 for user_id, hist in tqdm(u_data.groupby('user_id')): # 當前用戶movie rated_movie_list = hist['movie_id'].tolist() candidate_set = list(set(item_ids) - set(rated_movie_list)) neg_list_id = np.random.choice(candidate_set, size=len(rated_movie_list) * neg_rate, replace=True) for id in neg_list_id: neg_data.append([user_id, id, -1, 0]) u_data_neg = pd.DataFrame(neg_data) u_data_neg.columns = ['user_id', 'movie_id', 'rating', 'timestamp'] u_data = pandas.concat([u_data, u_data_neg]) print('end neg sample') return u_data
讀取item數據
u_item = pd.read_csv("ml-100k/u.item", sep='|', header=None, error_bad_lines=False) genres_columns = ['Action', 'Adventure', 'Animation', 'Children', 'Comedy', 'Crime', 'Documentary', 'Drama', 'Fantasy', 'Film_Noir', 'Horror', 'Musical', 'Mystery', 'Romance', 'Sci-Fi', 'Thriller', 'War', 'Western'] u_item.columns = ['movie_id', 'title', 'release_date', 'video_date', 'url', 'unknown'] + genres_columns
處理genres並刪除單獨的genres列
genres_list = []
for index, row in u_item.iterrows(): genres = [] for item in genres_columns: if row[item]: genres.append(item) genres_list.append('|'.join(genres)) u_item['genres'] = genres_list for item in genres_columns: del u_item[item]
讀取用戶信息:
# user id | age | gender | occupation(職業) | zip code(郵編,地區) u_user = pd.read_csv("ml-100k/u.user", sep='|', header=None) u_user.columns = ['user_id', 'age', 'gender', 'occupation', 'zip']
join到一起:
data = pandas.merge(u_data, u_item, on="movie_id", how='left') data = pandas.merge(data, u_user, on="user_id", how='left') data.to_csv('ml-100k/data.csv', index=False)
處理特征:
sparse_features = ["movie_id", "user_id", "gender", "age", "occupation", "zip", ] data[sparse_features] = data[sparse_features].astype(str) target = ['rating'] # 評分 data['rating'] = [1 if int(x) >= 0 else 0 for x in data['rating']]
先特征編碼:
for feat in sparse_features: lbe = LabelEncoder() data[feat] = lbe.fit_transform(data[feat])
處理genres特征,一個movie有多個genres,先拆分,然后編碼為數字,注意是從1開始;由於每個movie的genres長度不一樣,可以計算最大長度,位數不足的后面補零(pad_sequences,在post補0)
def split(x): key_ans = x.split('|') for key in key_ans: if key not in key2index: # Notice : input value 0 is a special "padding",so we do not use 0 to encode valid feature for sequence input key2index[key] = len(key2index) + 1 return list(map(lambda x: key2index[x], key_ans)) key2index = {} genres_list = list(map(split, data['genres'].values)) genres_length = np.array(list(map(len, genres_list))) max_len = max(genres_length) # Notice : padding=`post` genres_list = pad_sequences(genres_list, maxlen=max_len, padding='post', )
構建deepctr的特征列,主要分為兩類特征,一是定長的SparseFeat,稀疏的類別特征,二是可變長度的VarLenSparseFeat,像genres這樣的包含多個的。
fixlen_feature_columns = [SparseFeat(feat, data[feat].nunique(), embedding_dim=4) for feat in sparse_features] use_weighted_sequence = False if use_weighted_sequence: varlen_feature_columns = [VarLenSparseFeat(SparseFeat('genres', vocabulary_size=len( key2index) + 1, embedding_dim=4), maxlen=max_len, combiner='mean', weight_name='genres_weight')] # Notice : value 0 is for padding for sequence input feature else: varlen_feature_columns = [VarLenSparseFeat(SparseFeat('genres', vocabulary_size=len( key2index) + 1, embedding_dim=4), maxlen=max_len, combiner='mean', weight_name=None)] # Notice : value 0 is for padding for sequence input feature linear_feature_columns = fixlen_feature_columns + varlen_feature_columns dnn_feature_columns = fixlen_feature_columns + varlen_feature_columns feature_names = get_feature_names(linear_feature_columns + dnn_feature_columns)
封裝訓練數據,先shuffle(亂排)數據,然后生成dict input數據。
data = sklearn.utils.shuffle(data) train_model_input = {name: data[name] for name in sparse_features} # train_model_input["genres"] = genres_list
構建DeepFM模型,由於目標值是0,1,因此采用binary,損失函數用binary_crossentropy
model = DeepFM(linear_feature_columns, dnn_feature_columns, task='binary') model.compile(optimizer=tf.keras.optimizers.Adam(), loss='binary_crossentropy', metrics=['AUC', 'Precision', 'Recall']) model.summary()
訓練模型:
model.fit(train_model_input, data[target].values, batch_size=256, epochs=20, verbose=2, validation_split=0.2 )
開始訓練:
Epoch 1/20 625/625 - 3s - loss: 0.5081 - auc: 0.8279 - precision: 0.7419 - recall: 0.7695 - val_loss: 0.4745 - val_auc: 0.8513 - val_precision: 0.7563 - val_recall: 0.7936 Epoch 2/20 625/625 - 2s - loss: 0.4695 - auc: 0.8538 - precision: 0.7494 - recall: 0.8105 - val_loss: 0.4708 - val_auc: 0.8539 - val_precision: 0.7498 - val_recall: 0.8127 Epoch 3/20 625/625 - 2s - loss: 0.4652 - auc: 0.8564 - precision: 0.7513 - recall: 0.8139 - val_loss: 0.4704 - val_auc: 0.8545 - val_precision: 0.7561 - val_recall: 0.8017 Epoch 4/20 625/625 - 2s - loss: 0.4624 - auc: 0.8579 - precision: 0.7516 - recall: 0.8146 - val_loss: 0.4724 - val_auc: 0.8542 - val_precision: 0.7296 - val_recall: 0.8526 Epoch 5/20 625/625 - 2s - loss: 0.4607 - auc: 0.8590 - precision: 0.7521 - recall: 0.8173 - val_loss: 0.4699 - val_auc: 0.8550 - val_precision: 0.7511 - val_recall: 0.8141 Epoch 6/20 625/625 - 2s - loss: 0.4588 - auc: 0.8602 - precision: 0.7545 - recall: 0.8165 - val_loss: 0.4717 - val_auc: 0.8542 - val_precision: 0.7421 - val_recall: 0.8265 Epoch 7/20 625/625 - 2s - loss: 0.4574 - auc: 0.8610 - precision: 0.7535 - recall: 0.8192 - val_loss: 0.4722 - val_auc: 0.8547 - val_precision: 0.7549 - val_recall: 0.8023 Epoch 8/20 625/625 - 2s - loss: 0.4561 - auc: 0.8619 - precision: 0.7543 - recall: 0.8201 - val_loss: 0.4717 - val_auc: 0.8548 - val_precision: 0.7480 - val_recall: 0.8185 Epoch 9/20 625/625 - 2s - loss: 0.4531 - auc: 0.8643 - precision: 0.7573 - recall: 0.8210 - val_loss: 0.4696 - val_auc: 0.8583 - val_precision: 0.7598 - val_recall: 0.8103 Epoch 10/20 625/625 - 2s - loss: 0.4355 - auc: 0.8768 - precision: 0.7787 - recall: 0.8166 - val_loss: 0.4435 - val_auc: 0.8769 - val_precision: 0.7756 - val_recall: 0.8293 Epoch 11/20 625/625 - 2s - loss: 0.4093 - auc: 0.8923 - precision: 0.7915 - recall: 0.8373 - val_loss: 0.4301 - val_auc: 0.8840 - val_precision: 0.7806 - val_recall: 0.8390 Epoch 12/20 625/625 - 2s - loss: 0.3970 - auc: 0.8988 - precision: 0.7953 - recall: 0.8497 - val_loss: 0.4286 - val_auc: 0.8867 - val_precision: 0.7903 - val_recall: 0.8299 Epoch 13/20 625/625 - 2s - loss: 0.3896 - auc: 0.9029 - precision: 0.8001 - recall: 0.8542 - val_loss: 0.4253 - val_auc: 0.8888 - val_precision: 0.7913 - val_recall: 0.8322 Epoch 14/20 625/625 - 2s - loss: 0.3825 - auc: 0.9067 - precision: 0.8038 - recall: 0.8584 - val_loss: 0.4205 - val_auc: 0.8917 - val_precision: 0.7885 - val_recall: 0.8506 Epoch 15/20 625/625 - 2s - loss: 0.3755 - auc: 0.9102 - precision: 0.8074 - recall: 0.8624 - val_loss: 0.4204 - val_auc: 0.8940 - val_precision: 0.7868 - val_recall: 0.8607 Epoch 16/20 625/625 - 2s - loss: 0.3687 - auc: 0.9136 - precision: 0.8117 - recall: 0.8653 - val_loss: 0.4176 - val_auc: 0.8956 - val_precision: 0.8097 - val_recall: 0.8236 Epoch 17/20 625/625 - 2s - loss: 0.3617 - auc: 0.9170 - precision: 0.8155 - recall: 0.8682 - val_loss: 0.4166 - val_auc: 0.8966 - val_precision: 0.8056 - val_recall: 0.8354 Epoch 18/20 625/625 - 2s - loss: 0.3553 - auc: 0.9201 - precision: 0.8188 - recall: 0.8716 - val_loss: 0.4168 - val_auc: 0.8977 - val_precision: 0.7996 - val_recall: 0.8492 Epoch 19/20 625/625 - 2s - loss: 0.3497 - auc: 0.9227 - precision: 0.8214 - recall: 0.8741 - val_loss: 0.4187 - val_auc: 0.8973 - val_precision: 0.8079 - val_recall: 0.8358 Epoch 










