前面我們講解了使用 Jenkins 流水線來實現 Kubernetes 應用的 CI/CD,現在我們來將這個流水線遷移到 Tekton 上面來,其實整體思路都是一樣的,就是把要整個工作流划分成不同的任務來執行,前面工作流的階段划分了以下幾個階段:Clone 代碼 -> 單元測試 -> Golang 編譯打包 -> Docker 鏡像構建/推送 -> Kubectl 部署服務
。

在 Tekton 中我們就可以將這些階段直接轉換成 Task 任務,Clone 代碼在 Tekton 中不需要我們主動定義一個任務,只需要在執行的任務上面指定一個輸入的代碼資源即可。下面我們就來將上面的工作流一步一步來轉換成 Tekton 流水線,代碼倉庫同樣還是 http://git.k8s.local/course/devops-demo.git
。
Clone 代碼
雖然我們可以不用單獨定義一個 Clone 代碼的任務,直接使用 git 類型的輸入資源即可,由於這里涉及到的任務較多,而且很多時候都需要先 Clone 代碼然后再進行操作,所以最好的方式是將代碼 Clone 下來過后通過 Workspace 共享給其他任務,這里我們可以直接使用 Catalog git-clone 來實現這個任務,我們可以根據自己的需求做一些定制,對應的 Task 如下所示:
# task-clone.yaml
apiVersion: tekton.dev/v1beta1
kind: Task
metadata:
name: git-clone
spec:
workspaces:
- name: output
description: The git repo will be cloned onto the volume backing this Workspace.
- name: basic-auth
optional: true
description: |
A Workspace containing a .gitconfig and .git-credentials file. These
will be copied to the user's home before any git commands are run. Any
other files in this Workspace are ignored. It is strongly recommended
to use ssh-directory over basic-auth whenever possible and to bind a
Secret to this Workspace over other volume types.
params:
- name: url
description: Repository URL to clone from.
type: string
- name: revision
description: Revision to checkout. (branch, tag, sha, ref, etc...)
type: string
default: ""
- name: refspec
description: Refspec to fetch before checking out revision.
default: ""
- name: submodules
description: Initialize and fetch git submodules.
type: string
default: "true"
- name: depth
description: Perform a shallow clone, fetching only the most recent N commits.
type: string
default: "1"
- name: sslVerify
description: Set the `http.sslVerify` global git config. Setting this to `false` is not advised unless you are sure that you trust your git remote.
type: string
default: "true"
- name: subdirectory
description: Subdirectory inside the `output` Workspace to clone the repo into.
type: string
default: ""
- name: sparseCheckoutDirectories
description: Define the directory patterns to match or exclude when performing a sparse checkout.
type: string
default: ""
- name: deleteExisting
description: Clean out the contents of the destination directory if it already exists before cloning.
type: string
default: "true"
- name: verbose
description: Log the commands that are executed during `git-clone`'s operation.
type: string
default: "true"
- name: gitInitImage
description: The image providing the git-init binary that this Task runs.
type: string
default: "cnych/tekton-git-init:v0.24.1"
- name: userHome
description: |
Absolute path to the user's home directory. Set this explicitly if you are running the image as a non-root user or have overridden
the gitInitImage param with an image containing custom user configuration.
type: string
default: "/root"
results:
- name: commit
description: The precise commit SHA that was fetched by this Task.
- name: url
description: The precise URL that was fetched by this Task.
steps:
- name: clone
image: "$(params.gitInitImage)"
env:
- name: HOME
value: "$(params.userHome)"
- name: PARAM_URL
value: $(params.url)
- name: PARAM_REVISION
value: $(params.revision)
- name: PARAM_REFSPEC
value: $(params.refspec)
- name: PARAM_SUBMODULES
value: $(params.submodules)
- name: PARAM_DEPTH
value: $(params.depth)
- name: PARAM_SSL_VERIFY
value: $(params.sslVerify)
- name: PARAM_SUBDIRECTORY
value: $(params.subdirectory)
- name: PARAM_DELETE_EXISTING
value: $(params.deleteExisting)
- name: PARAM_VERBOSE
value: $(params.verbose)
- name: PARAM_SPARSE_CHECKOUT_DIRECTORIES
value: $(params.sparseCheckoutDirectories)
- name: PARAM_USER_HOME
value: $(params.userHome)
- name: WORKSPACE_OUTPUT_PATH
value: $(workspaces.output.path)
- name: WORKSPACE_BASIC_AUTH_DIRECTORY_BOUND
value: $(workspaces.basic-auth.bound)
- name: WORKSPACE_BASIC_AUTH_DIRECTORY_PATH
value: $(workspaces.basic-auth.path)
script: |
#!/usr/bin/env sh
set -eu
if [ "${PARAM_VERBOSE}" = "true" ] ; then
set -x
fi
if [ "${WORKSPACE_BASIC_AUTH_DIRECTORY_BOUND}" = "true" ] ; then
cp "${WORKSPACE_BASIC_AUTH_DIRECTORY_PATH}/.git-credentials" "${PARAM_USER_HOME}/.git-credentials"
cp "${WORKSPACE_BASIC_AUTH_DIRECTORY_PATH}/.gitconfig" "${PARAM_USER_HOME}/.gitconfig"
chmod 400 "${PARAM_USER_HOME}/.git-credentials"
chmod 400 "${PARAM_USER_HOME}/.gitconfig"
fi
CHECKOUT_DIR="${WORKSPACE_OUTPUT_PATH}/${PARAM_SUBDIRECTORY}"
cleandir() {
# Delete any existing contents of the repo directory if it exists.
#
# We don't just "rm -rf ${CHECKOUT_DIR}" because ${CHECKOUT_DIR} might be "/"
# or the root of a mounted volume.
if [ -d "${CHECKOUT_DIR}" ] ; then
# Delete non-hidden files and directories
rm -rf "${CHECKOUT_DIR:?}"/*
# Delete files and directories starting with . but excluding ..
rm -rf "${CHECKOUT_DIR}"/.[!.]*
# Delete files and directories starting with .. plus any other character
rm -rf "${CHECKOUT_DIR}"/..?*
fi
}
if [ "${PARAM_DELETE_EXISTING}" = "true" ] ; then
cleandir
fi
/ko-app/git-init \
-url="${PARAM_URL}" \
-revision="${PARAM_REVISION}" \
-refspec="${PARAM_REFSPEC}" \
-path="${CHECKOUT_DIR}" \
-sslVerify="${PARAM_SSL_VERIFY}" \
-submodules="${PARAM_SUBMODULES}" \
-depth="${PARAM_DEPTH}" \
-sparseCheckoutDirectories="${PARAM_SPARSE_CHECKOUT_DIRECTORIES}"
cd "${CHECKOUT_DIR}"
RESULT_SHA="$(git rev-parse HEAD)"
EXIT_CODE="$?"
if [ "${EXIT_CODE}" != 0 ] ; then
exit "${EXIT_CODE}"
fi
printf "%s" "${RESULT_SHA}" > "$(results.commit.path)"
printf "%s" "${PARAM_URL}" > "$(results.url.path)"
一般來說我們只需要提供 output 這個個用於持久化代碼的 workspace,然后還包括 url 和 revision 這兩個參數,其他使用默認的即可。
單元測試
單元測試階段比較簡單,正常來說也是只是單純執行一個測試命令即可,我們這里沒有真正執行單元測試,所以簡單測試下即可,編寫一個如下所示的 Task:
# task-test.yaml
apiVersion: tekton.dev/v1beta1
kind: Task
metadata:
name: test
spec:
steps:
- name: test
image: golang:1.14-alpine
command: ['echo']
args: ['this is a test task']
編譯打包
然后第二個階段是編譯打包階段,因為我們這個項目的 Dockerfile 不是使用的多階段構建,所以需要先用一個任務去將應用編譯打包成二進制文件,然后將這個編譯過后的文件傳遞到下一個任務進行鏡像構建。
我們已經明確了這個階段要做的事情,編寫任務也就簡單了,創建如下所的 Task 任務,首先需要通過定義一個 workspace 把 clone 任務里面的代碼關聯過來:
# task-build.yaml
apiVersion: tekton.dev/v1beta1
kind: Task
metadata:
name: build
spec:
workspaces:
- name: go-repo
mountPath: /workspace/repo
steps:
- name: build
image: golang:1.14-alpine
workingDir: /workspace/repo
script: |
go build -v -o app
env:
- name: GOPROXY
value: https://goproxy.cn
- name: GOOS
value: linux
- name: GOARCH
value: amd64
這個構建任務也很簡單,只是我們將需要用到的環境變量直接通過 env
注入了,當然直接寫入到 script
中也是可以的,或者直接使用 command
來執行任務都可以,然后構建生成的 app
這個二進制文件保留在代碼根目錄,這樣也就可以通過 workspace 進行共享了。
Docker 鏡像
接下來就是構建並推送 Docker 鏡像了,前面我們介紹過使用 Kaniko、DooD、DinD 3種模式的鏡像構建方式,這里我們直接使用 DinD
這種模式,我們這里要構建的鏡像 Dockerfile 非常簡單:
FROM alpine
WORKDIR /home
# 修改alpine源為阿里雲
RUN sed -i 's/dl-cdn.alpinelinux.org/mirrors.ustc.edu.cn/g' /etc/apk/repositories && \
apk update && \
apk upgrade && \
apk add ca-certificates && update-ca-certificates && \
apk add --update tzdata && \
rm -rf /var/cache/apk/*
COPY app /home/
ENV TZ=Asia/Shanghai
EXPOSE 8080
ENTRYPOINT ./app
就行直接將編譯好的二進制文件拷貝到鏡像中即可,所以我們這里同樣需要通過 Workspace 去獲取上一個構建任務的制品,當然要使用 DinD
模式構建鏡像,需要用到 sidecar 功能,創建一個如下所示的任務:
# task-docker.yaml
apiVersion: tekton.dev/v1beta1
kind: Task
metadata:
name: docker
spec:
workspaces:
- name: go-repo
params:
- name: image
description: Reference of the image docker will produce.
- name: registry_mirror
description: Specific the docker registry mirror
default: ""
- name: registry_url
description: private docker images registry url
steps:
- name: docker-build # 構建步驟
image: docker:stable
env:
- name: DOCKER_HOST # 用 TLS 形式通過 TCP 鏈接 sidecar
value: tcp://localhost:2376
- name: DOCKER_TLS_VERIFY # 校驗 TLS
value: "1"
- name: DOCKER_CERT_PATH # 使用 sidecar 守護進程生成的證書
value: /certs/client
- name: DOCKER_PASSWORD
valueFrom:
secretKeyRef:
name: harbor-auth
key: password
- name: DOCKER_USERNAME
valueFrom:
secretKeyRef:
name: harbor-auth
key: username
workingDir: $(workspaces.go-repo.path)
script: | # docker 構建命令
docker login $(params.registry_url) -u $DOCKER_USERNAME -p $DOCKER_PASSWORD
docker build --no-cache -f ./Dockerfile -t $(params.image) .
docker push $(params.image)
volumeMounts: # 聲明掛載證書目錄
- mountPath: /certs/client
name: dind-certs
sidecars: # sidecar 模式,提供 docker daemon服務,實現真正的 DinD 模式
- image: docker:dind
name: server
args:
- --storage-driver=vfs
- --userland-proxy=false
- --debug
- --insecure-registry=$(params.registry_url)
- --registry-mirror=$(params.registry_mirror)
securityContext:
privileged: true
env:
- name: DOCKER_TLS_CERTDIR # 將生成的證書寫入與客戶端共享的路徑
value: /certs
volumeMounts:
- mountPath: /certs/client
name: dind-certs
readinessProbe: # 等待 dind daemon 生成它與客戶端共享的證書
periodSeconds: 1
exec:
command: ["ls", "/certs/client/ca.pem"]
volumes: # 使用 emptyDir 的形式即可
- name: dind-certs
emptyDir: {}
這個任務的重點還是要去聲明一個 Workspace,當執行任務的時候要使用和前面構建任務同一個 Workspace,這樣就可以獲得上面編譯成的 app
這個二進制文件了。
部署
接下來的部署階段,我們同樣可以參考之前 Jenkins 流水線里面的實現,由於項目中我們包含了 Helm Chart 包,所以直接使用 Helm 來部署即可,要實現 Helm 部署,當然我們首先需要一個包含 helm
命令的鏡像,當然完全可以自己去編寫一個這樣的任務,此外我們還可以直接去 hub.tekton.dev
上面查找 Catalog,因為這上面就有很多比較通用的一些任務了,比如 helm-upgrade-from-source 這個 Task 任務就完全可以滿足我們的需求了:
helm tekton
這個 Catalog 下面也包含完整的使用文檔了,我們可以將該任務直接下載下來根據我們自己的需求做一些定制修改,如下所示:
# task-deploy.yaml
apiVersion: tekton.dev/v1beta1
kind: Task
metadata:
name: deploy
spec:
params:
- name: charts_dir
description: The directory in source that contains the helm chart
- name: release_name
description: The helm release name
- name: release_namespace
description: The helm release namespace
default: ""
- name: overwrite_values
description: "Specify the values you want to overwrite, comma separated: autoscaling.enabled=true,replicas=1"
default: ""
- name: values_file
description: "The values file to be used"
default: "values.yaml"
- name: helm_image
description: "helm image to be used"
default: "docker.io/lachlanevenson/k8s-helm:v3.3.4@sha256:e1816be207efbd342cba9d3d32202e237e3de20af350617f8507dc033ea66803" #tag: v3.3.4
workspaces:
- name: source
results:
- name: helm-status
description: Helm deploy status
steps:
- name: upgrade
image: $(params.helm_image)
workingDir: /workspace/source
script: |
echo current installed helm releases
helm list --namespace "$(params.release_namespace)"
echo installing helm chart...
helm upgrade --install --wait --values "$(params.charts_dir)/$(params.values_file)" --create-namespace --namespace "$(params.release_namespace)" $(params.release_name) $(params.charts_dir) --debug --set "$(params.overwrite_values)"
status=`helm status $(params.release_name) --namespace "$(params.release_namespace)" | awk '/STATUS/ {print $2}'`
echo ${status} | tr -d "\n" | tee $(results.helm-status.path)
因為我們的 Helm Chart 模板就在代碼倉庫中,所以不需要從 Chart Repo 倉庫中獲取,只需要指定 Chart 路徑即可,其他可配置的參數都通過 params
參數暴露出去了,非常靈活,最后我們還獲取了 Helm 部署的狀態,寫入到了 Results 中,方便后續任務處理。
回滾
最后應用部署完成后可能還需要回滾,因為可能部署的應用有錯誤,當然這個回滾動作最好是我們自己去觸發,但是在某些場景下,比如 helm 部署已經明確失敗了,那么我們當然可以自動回滾了,所以就需要判斷當部署失敗的時候再執行回滾,也就是這個任務並不是一定會發生的,只在某些場景下才會出現,我們可以在流水線中通過使用 WhenExpressions
來實現這個功能,之前版本中是使用 Conditions
,不過已經廢棄了。要只在滿足某些條件時運行任務,可以使用 when
字段來保護任務執行,when 字段允許你列出對 WhenExpressions
的一系列引用。
WhenExpressions
由 Input
、Operator
和 Values
幾部分組成:
Input
是WhenExpressions
的輸入,它可以是一個靜態的輸入或變量(Params 或 Results),如果未提供輸入,則默認為空字符串Operator
是一個運算符,表示 Input 和 Values 之間的關系,有效的運算符包括in
、notin
Values
是一個字符串數組,必須提供一個非空的 Values 數組,它同樣可以包含靜態值或者變量(Params、Results 或者 Workspaces 綁定)
當在一個 Task 任務中配置了 WhenExpressions
,在執行 Task 之前會評估聲明的 WhenExpressions
,如果結果為 True,則執行任務,如果為 False,則不會執行該任務。
我們這里創建的回滾任務如下所示:
# task-rollback.yaml
apiVersion: tekton.dev/v1beta1
kind: Task
metadata:
name: rollback
spec:
params:
- name: release_name
description: The helm release name
- name: release_namespace
description: The helm release namespace
default: ""
- name: helm_image
description: "helm image to be used"
default: "docker.io/lachlanevenson/k8s-helm:v3.3.4@sha256:e1816be207efbd342cba9d3d32202e237e3de20af350617f8507dc033ea66803" #tag: v3.3.4
steps:
- name: rollback
image: $(params.helm_image)
script: |
echo rollback current installed helm releases
helm rollback $(params.release_name) --namespace $(params.release_namespace)
流水線
現在我們的整個工作流任務都已經創建完成了,接下來我們就可以將這些任務全部串聯起來組成一個 Pipeline 流水線了,將上面定義的幾個 Task 引用到 Pipeline 中來,當然還需要聲明 Task 中用到的 resources 或者 workspaces 這些數據:
# pipeline.yaml
apiVersion: tekton.dev/v1beta1
kind: Pipeline
metadata:
name: pipeline
spec:
workspaces: # 聲明 workspaces
- name: go-repo-pvc
params:
# 定義代碼倉庫
- name: git_url
- name: revision
type: string
default: "master"
# 定義鏡像參數
- name: image
- name: registry_url
type: string
default: "harbor.k8s.local"
- name: registry_mirror
type: string
default: "https://ot2k4d59.mirror.aliyuncs.com/"
# 定義 helm charts 參數
- name: charts_dir
- name: release_name
- name: release_namespace
default: "default"
- name: overwrite_values
default: ""
- name: values_file
default: "values.yaml"
tasks: # 添加task到流水線中
- name: clone
taskRef:
name: git-clone
workspaces:
- name: output
workspace: go-repo-pvc
params:
- name: url
value: $(params.git_url)
- name: revision
value: $(params.revision)
- name: test
taskRef:
name: test
- name: build # 編譯二進制程序
taskRef:
name: build
runAfter: # 測試任務執行之后才執行 build task
- test
- clone
workspaces: # 傳遞 workspaces
- name: go-repo
workspace: go-repo-pvc
- name: docker # 構建並推送 Docker 鏡像
taskRef:
name: docker
runAfter:
- build
workspaces: # 傳遞 workspaces
- name: go-repo
workspace: go-repo-pvc
params: # 傳遞參數
- name: image
value: $(params.image)
- name: registry_url
value: $(params.registry_url)
- name: registry_mirror
value: $(params.registry_mirror)
- name: deploy # 部署應用
taskRef:
name: deploy
runAfter:
- docker
workspaces:
- name: source
workspace: go-repo-pvc
params:
- name: charts_dir
value: $(params.charts_dir)
- name: release_name
value: $(params.release_name)
- name: release_namespace
value: $(params.release_namespace)
- name: overwrite_values
value: $(params.overwrite_values)
- name: values_file
value: $(params.values_file)
- name: rollback # 回滾
taskRef:
name: rollback
when:
- input: "$(tasks.deploy.results.helm-status)"
operator: in
values: ["failed"]
params:
- name: release_name
value: $(params.release_name)
- name: release_namespace
value: $(params.release_namespace)
整體流程比較簡單,就是在 Pipeline 需要先聲明使用到的 Workspace、Resource、Params 這些資源,然后將聲明的數據傳遞到 Task 任務中去,需要注意的是最后一個回滾任務,我們需要根據前面的 deploy
任務的結果來判斷是否需要執行該任務,所以這里我們使用了 when
屬性,通過 $(tasks.deploy.results.helm-status)
獲取部署狀態。
執行流水線
現在我們就可以來執行下我們的流水線,看是否符合我們自身的要求,首先我們需要先創建關聯的其他資源對象,比如 Workspace 對應的 PVC、還有 GitLab、Harbor 的認證信息:
# other.yaml
apiVersion: v1
kind: Secret
metadata:
name: gitlab-auth
annotations:
tekton.dev/git-0: http://git.k8s.local
type: kubernetes.io/basic-auth
stringData:
username: root
password: admin321
---
apiVersion: v1
kind: Secret
metadata:
name: harbor-auth
annotations:
tekton.dev/docker-0: http://harbor.k8s.local
type: kubernetes.io/basic-auth
stringData:
username: admin
password: Harbor12345
---
apiVersion: v1
kind: ServiceAccount
metadata:
name: tekton-build-sa
secrets:
- name: harbor-auth
- name: gitlab-auth
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
name: tekton-clusterrole-binding
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: edit
subjects:
- kind: ServiceAccount
name: tekton-build-sa
namespace: default
---
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: go-repo-pvc
spec:
resources:
requests:
storage: 1Gi
volumeMode: Filesystem
storageClassName: nfs-storage # 使用 StorageClass 自動生成 PV
accessModes:
- ReadWriteOnce
這些關聯的資源對象創建完成后,還需要為上面的 ServiceAccount 綁定一個權限,因為在 Helm 容器中我們要去操作一些集群資源,必然需要先做權限聲明,這里我們可以將 tekton-build-sa
綁定到 edit
這個 ClusterRole 上去。
我們接下來就可以創建一個 PipelineRun 資源對象來觸發我們的流水線構建了:
# pipelinerun.yaml
apiVersion: tekton.dev/v1beta1
kind: PipelineRun
metadata:
name: pipelinerun
spec:
serviceAccountName: tekton-build-sa
pipelineRef:
name: pipeline
workspaces:
- name: go-repo-pvc
persistentVolumeClaim:
claimName: go-repo-pvc
params:
- name: git_url
value: http://git.k8s.local/course/devops-demo.git
- name: image
value: "harbor.k8s.local/course/devops-demo:v0.1.0"
- name: charts_dir
value: "./helm"
- name: release_name
value: devops-demo
- name: release_namespace
value: "kube-ops"
- name: overwrite_values
value: "image.repository=harbor.k8s.local/course/devops-demo,image.tag=v0.1.0"
- name: values_file
value: "my-values.yaml"
直接創建上面的資源對象就可以執行我們的 Pipeline 流水線了:
$ kubectl apply -f pipelinerun.yaml
$ tkn pr describe pipelinerun
Name: pipelinerun
Namespace: default
Pipeline Ref: pipeline
Service Account: tekton-build-sa
Timeout: 1h0m0s
Labels:
tekton.dev/pipeline=pipeline
🌡️ Status
STARTED DURATION STATUS
1 minute ago 1 minute Succeeded(Completed)
📦 Resources
No resources
⚓ Params
NAME VALUE
∙ git_url http://git.k8s.local/course/devops-demo.git
∙ image harbor.k8s.local/course/devops-demo:v0.1.0
∙ charts_dir ./helm
∙ release_name devops-demo
∙ release_namespace kube-ops
∙ overwrite_values image.repository=harbor.k8s.local/course/devops-demo,image.tag=v0.1.0
∙ values_file my-values.yaml
📝 Results
No results
📂 Workspaces
NAME SUB PATH WORKSPACE BINDING
∙ go-repo-pvc --- PersistentVolumeClaim (claimName=go-repo-pvc)
🗂 Taskruns
NAME TASK NAME STARTED DURATION STATUS
∙ pipelinerun-deploy-zpmg9 deploy 33 seconds ago 15 seconds Succeeded
∙ pipelinerun-docker-rkhxq docker 1 minute ago 45 seconds Succeeded
∙ pipelinerun-build-gnnsp build 1 minute ago 15 seconds Succeeded
∙ pipelinerun-test-z5ppb test 1 minute ago 5 seconds Succeeded
∙ pipelinerun-clone-xdrjh clone 1 minute ago 8 seconds Succeeded
# 部署成功了
$ curl devops-demo.k8s.local
{"msg":"Hello DevOps On Kubernetes"}
在 Dashboard 上也可以看到可以流水線可以正常執行,由於部署成功了,所以 rollback 回滾的任務也就被忽略了:
pipeline deployed
觸發器
整個流水線已經成功執行了,接下來最后一步就是將 Gitlab 和 Tekton 進行對接,也就是通過 Tekton Trigger 來自動觸發構建。關於 Tekton Trigger 的使用前面我們已經詳細講解過了,細節就不過多討論,當然在使用之前也一定要先部署 interceptors
:
kubectl apply -f https://storage.googleapis.com/tekton-releases/triggers/previous/v0.14.2/interceptors.yaml
首先添加一個用於 Gitlab Webhook 訪問的 Secret Token,同樣要將這個 Secret 關聯到上面使用的 ServiceAccount 上面去,然后繼續添加對應的 RBAC 權限:
# other.yaml
# ......
apiVersion: v1
kind: Secret
metadata:
name: gitlab-secret
type: Opaque
stringData:
secretToken: "1234567"
---
apiVersion: v1
kind: ServiceAccount
metadata:
name: tekton-build-sa
secrets:
- name: harbor-auth
- name: gitlab-auth
- name: gitlab-secret
---
apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
name: tekton-triggers-gitlab-minimal
rules:
# EventListeners need to be able to fetch all namespaced resources
- apiGroups: ["triggers.tekton.dev"]
resources: ["eventlisteners", "triggerbindings", "triggertemplates", "triggers"]
verbs: ["get", "list", "watch"]
- apiGroups: [""]
# configmaps is needed for updating logging config
resources: ["configmaps"]
verbs: ["get", "list", "watch"]
# Permissions to create resources in associated TriggerTemplates
- apiGroups: ["tekton.dev"]
resources: ["pipelineruns", "pipelineresources", "taskruns"]
verbs: ["create"]
- apiGroups: [""]
resources: ["serviceaccounts"]
verbs: ["impersonate"]
- apiGroups: ["policy"]
resources: ["podsecuritypolicies"]
resourceNames: ["tekton-triggers"]
verbs: ["use"]
---
apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
name: tekton-triggers-gitlab-binding
subjects:
- kind: ServiceAccount
name: tekton-build-sa
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: Role
name: tekton-triggers-gitlab-minimal
---
kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
name: tekton-triggers-gitlab-clusterrole
rules:
# EventListeners need to be able to fetch any clustertriggerbindings
- apiGroups: ["triggers.tekton.dev"]
resources: ["clustertriggerbindings", "clusterinterceptors"]
verbs: ["get", "list", "watch"]
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
name: tekton-triggers-gitlab-clusterbinding
subjects:
- kind: ServiceAccount
name: tekton-build-sa
namespace: default
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: tekton-triggers-gitlab-clusterrole
接着就可以來創建 EventListener 資源對象了,用來接收 Gitlab 的 Push Event 事件,如下所示:
# gitlab-listener.yaml
apiVersion: triggers.tekton.dev/v1alpha1
kind: EventListener
metadata:
name: gitlab-listener # 該事件監聽器會創建一個名為el-gitlab-listener的Service對象
spec:
serviceAccountName: tekton-build-sa
triggers:
- name: gitlab-push-events-trigger
interceptors:
- ref:
name: gitlab
params:
- name: secretRef # 引用 gitlab-secret 的 Secret 對象中的 secretToken 的值
value:
secretName: gitlab-secret
secretKey: secretToken
- name: eventTypes
value:
- Push Hook # 只接收 GitLab Push 事件
bindings: # 定義TriggerBinding,配置參數
- name: gitrevision
value: $(body.checkout_sha)
- name: gitrepositoryurl
value: $(body.repository.git_http_url)
template:
ref: gitlab-template
上面我們通過 TriggerBinding 定義了兩個參數 gitrevision
、gitrepositoryurl
,這兩個參數的值可以通過 Gitlab 發送過來的 POST 請求中獲取到數據,然后我們就可以將這兩個參數傳遞到 TriggerTemplate
對象中去,這里的模板其實也就是將上面我們定義的 PipelineRun 對象模板化而已,主要是替換 git_url
和鏡像 TAG 這兩個參數,如下所示:
# gitlab-template.yaml
apiVersion: triggers.tekton.dev/v1alpha1
kind: TriggerTemplate
metadata:
name: gitlab-template
spec:
params: # 定義參數,和 TriggerBinding 中的保持一致
- name: gitrevision
- name: gitrepositoryurl
resourcetemplates: # 定義資源模板
- apiVersion: tekton.dev/v1beta1
kind: PipelineRun # 定義 pipeline 模板
metadata:
generateName: gitlab-run- # TaskRun 名稱前綴
spec:
serviceAccountName: tekton-build-sa
pipelineRef:
name: pipeline
workspaces:
- name: go-repo-pvc
persistentVolumeClaim:
claimName: go-repo-pvc
params:
- name: git_url
value: $(tt.params.gitrepositoryurl)
- name: image
value: "harbor.k8s.local/course/devops-demo:$(tt.params.gitrevision)"
- name: charts_dir
value: "./helm"
- name: release_name
value: devops-demo
- name: release_namespace
value: "kube-ops"
- name: overwrite_values
value: "image.repository=harbor.k8s.local/course/devops-demo,image.tag=$(tt.params.gitrevision)"
- name: values_file
value: "my-values.yaml"
直接創建上面新建的幾個資源對象即可,這會創建一個 eventlistern 服務用來接收 Webhook 請求:
$ kubectl get eventlistener
NAME ADDRESS AVAILABLE REASON READY REASON
gitlab-listener http://el-gitlab-listener.default.svc.cluster.local:8080 True MinimumReplicasAvailable True
所以一定還要記得在 Gitlab 倉庫中配置上 Webhook:
gitlab webhook
這樣我們整個觸發器和監聽器就配置好了,接下來我們去修改下我們的項目代碼,然后提交代碼,正常提交過后就會在集群中創建一個 PipelinRun 對象用來執行我們的流水線了:
$ kubectl get pipelinerun
NAME SUCCEEDED REASON STARTTIME COMPLETIONTIME
gitlab-run-kx6zr True Completed 2m14s 50s
$ curl devops-demo.k8s.local
{"msg":"Hello Tekton"}
可以看到流水線執行成功后,應用已經成功部署了我們新提交的代碼,到這里我們就完成了使用 Tekton 來重構項目的流水線。
K8S 進階訓練營