爬蟲說明: 1、本爬蟲是以面向對象的方式進行代碼架構的 2、本爬蟲爬取的數據存入到MongoDB數據庫中 3、爬蟲代碼中有詳細注釋
代碼展示
import re
import time
from pymongo import MongoClient
import requests
from lxml import html
class BaBaiSpider():
def __init__(self):
self.start_url = 'https://movie.douban.com/subject/26754233/reviews'
self.url_temp = 'https://movie.douban.com/subject/26754233/reviews?start={}'
# 由於豆瓣有ip地址訪問的反爬機制 需要登錄賬戶后獲取Cookie信息
# 有條件的可以使用ip代理池
self.headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.141 Safari/537.36",
'Cookie': 'll="118160"; bid=jBJGzgkqoW0; _ga=GA1.2.299310750.1603415173; _vwo_uuid_v2=D02C810B09B328A9291DA2DE0215B1F4E|7b20627b7b4770d357d6251faaad13b7; __yadk_uid=NVdS10Z9dQ70V1AkBBbqmLR6Ny6AQC6R; UM_distinctid=175530c360058f-0cd5eb2121026b-3e604000-144000-175530c3601502; Hm_lvt_19fc7b106453f97b6a84d64302f21a04=1603416111; __utmv=30149280.22554; douban-fav-remind=1; __gads=ID=9b3fe7aa29748925-22a3ff1066c400c6:T=1603618426:RT=1603618426:S=ALNI_MZdkcEBUdorLQd-nNQm0ECaz6aPgQ; __utmc=30149280; __utmc=223695111; ap_v=0,6.0; _pk_ref.100001.4cf6=%5B%22%22%2C%22%22%2C1610800679%2C%22https%3A%2F%2Faccounts.douban.com%2F%22%5D; _pk_ses.100001.4cf6=*; push_doumail_num=0; push_noty_num=0; dbcl2="225547599:+KzDIeqUyH8"; ck=S_qd; __utmt=1; douban-profile-remind=1; __utma=30149280.299310750.1603415173.1610800679.1610803327.13; __utmb=30149280.0.10.1610803327; __utmz=30149280.1610803327.13.11.utmcsr=baidu|utmccn=(organic)|utmcmd=organic|utmctr=%E8%B1%86%E7%93%A3%E7%94%B5%E5%BD%B1; __utma=223695111.299310750.1603415173.1610800679.1610803327.7; __utmb=223695111.0.10.1610803327; __utmz=223695111.1610803327.7.6.utmcsr=baidu|utmccn=(organic)|utmcmd=organic|utmctr=%E8%B1%86%E7%93%A3%E7%94%B5%E5%BD%B1; _pk_id.100001.4cf6=77003652978e8b92.1603415561.6.1610803542.1610797625.'
}
# 初始化MongoDB數據庫
self.client = MongoClient()
self.collection = self.client['test']['babai']
# 構造列表頁url
def get_url_list(self,total_page):
return [self.url_temp.format(i*20) for i in range(int(total_page)+1)]
# 請求並解析url地址
def parse_url(self,url):
rest = requests.get(url,headers=self.headers)
time.sleep(2)
return rest.content.decode()
# 獲取並解析列表頁評論數據
def get_item(self,str_html):
new_html = html.etree.HTML(str_html)
div_list = new_html.xpath('//div[@class="review-list "]/div')
# 獲取信息多采用三目運算符的方式 防止因獲取的內容不存在而報異常
# 通過三目運算符進行多重判斷可以增加程序的穩定性
for i in div_list:
item = {}
title = i.xpath('.//div[@class="main-bd"]/h2/a/text()')
item['評論標題'] = title[0] if len(title)>0 else None
name = i.xpath('.//a[@class="name"]/text()')
item['評論人姓名'] = name[0] if len(name)>0 else None
rate = i.xpath('.//span[contains(@class,"main-title-rating")]/@title')
item['評價'] = rate[0] if len(rate)>0 else None
time = i.xpath('.//span[@class="main-meta"]/text()')
item['評論時間'] = time[0] if len(time) > 0 else None
favor = i.xpath('.//div[@class="action"]/a[1]/span/text()')
item['贊成數'] = favor[0].strip() if len(favor)>0 else None
oppose = i.xpath('.//div[@class="action"]/a[2]/span/text()')
item['反對數'] = oppose[0].strip() if len(oppose)>0 else None
reply = i.xpath('.//a[@class="reply "]/text()')
item['回復數'] = reply[0].split('回應')[0] if len(reply)>0 else None
star = i.xpath('.//span[contains(@class,"main-title-rating")]/@class')
item['評論得分'] = re.findall(r'allstar(\d)0 main-title-rating',star[0])[0] if len(star)>0 else None
print(item)
self.save(item)
# 保存評論數據
def save(self,item):
self.collection.insert(item)
def run(self):
# 獲取數據總頁碼數
rest = requests.get(self.start_url,headers=self.headers)
str_html = html.etree.HTML(rest.content.decode())
total_page= str_html.xpath('//div[@class="paginator"]/a[last()]/text()')[0]
url_list = self.get_url_list(total_page)
for url in url_list:
old_html = self.parse_url(url)
self.get_item(old_html)
if __name__ == '__main__':
babai = BaBaiSpider()
babai.run()
二、數據分析和數據可視化部分
數據分析和數據可視化說明: 1、本博客通過Flask框架來進行數據分析和數據可視化 2、項目的架構圖為
代碼展示
-
數據分析代碼展示(analysis.py)
from pymongo import MongoClient
import pandas as pd
import jieba
import pymysql
from wordcloud import WordCloud
from matplotlib import pyplot as plt
import cv2 as cv
import numpy as np
# 評論標題詞雲
def word_cloud(df):
title_list = df['評論標題'].tolist()
pro_title_list = [' '.join(list(jieba.cut(i))) for i in title_list]
cut_text = ' '.join(pro_title_list)
# 讀入圖片背景
# 對於中文詞雲首先使用jieba來中文分詞,然后還要記得指定font_path設置字體識別
# 想要的話還能設置詞雲的背景圖片
background_image = cv.imread(r'../static/images/love.jpeg') # 不設置background_image可以不加這行,得到的詞雲就是矩形了
word_cloud = WordCloud(font_path="C:/Windows/Fonts/simfang.ttf", mask=background_image,
background_color='white').generate(cut_text)
plt.figure(figsize=(10,10))
plt.imshow(word_cloud,interpolation="bilinear")
plt.axis("off")
# 將詞雲圖保存到靜態文件的images目錄下 方便后續的展示
plt.savefig(r'../static/images/wordCount.jpg')
plt.show()
# 評論數量隨時間的變化
def hour_count(df):
# 按照小時進行分組求出不同時刻的評論數量
grouped = df.groupby('評論小時')['評論標題'].count().reset_index()
data = [[i['評論小時'],i['評論標題']] for i in grouped.to_dict(orient='records')]
print(data)
return data
# 不同評價星級的數量
def star_count(df):
# 按照評論星級進行分組求不同星級評價的數量
grouped = df.groupby('評論得分')['評論標題'].count().reset_index()
data = [[i['評論得分'],i['評論標題']] for i in grouped.to_dict(orient='records')]
return data
# 評分均值隨時間的變化
def star_avg(df):
# 將評論小時列數據轉換成int類型 方面后續求均值
df['評論得分'] = df['評論得分'].apply(lambda x:int(x))
grouped = df.groupby('評論小時')['評論得分'].mean().reset_index()
data = [[i['評論小時'],round(i['評論得分'],1)] for i in grouped.to_dict(orient='records')]
return data
if __name__ == '__main__':
client = MongoClient()
collection = client['test']['babai']
comments = collection.find({},{'_id':0})
df = pd.DataFrame(comments)
print(df.info())
print(df.head(1))
# 刪除評論或評論得分中為NaN的數據
df.dropna(how='any',inplace=True)
# 將贊成數、反對數中為空的值轉變成0
df['贊成數'] = df['贊成數'].apply(lambda x:int(x)if len(x)>0 else 0)
df['反對數'] = df['反對數'].apply(lambda x:int(x)if len(x)>0 else 0)
# 轉換時間類型為pandas時間類型
df['評論時間'] = pd.to_datetime(df['評論時間'])
date = pd.DatetimeIndex(df['評論時間'])
# 增加小時字段
df['評論小時'] = date.hour
# 評論標題詞雲
# word_cloud(df)
# 評論數量隨時間的變化
# data = hour_count(df)
# 不同星級評價的數量
# data = star_count(df)
# 評分均值隨時間的變化
data = star_avg(df)
# 創建數據庫連接
conn = pymysql.connect(host='localhost',user='root',password='123456',port=3306,database='babai',charset='utf8')
with conn.cursor() as cursor:
# 評論數量隨時間的變化
# sql = 'insert into db_hour_count(hour,count) values(%s,%s)'
# 不同星級評價的數量
# sql = 'insert into db_star_count(star,count) values(%s,%s)'
# 評分均值隨時間的變化
sql = 'insert into db_star_avg(hour,star_avg) values(%s,%s)'
try:
result = cursor.executemany(sql,data)
if result:
print('插入數據成功')
conn.commit()
except pymysql.MySQLError as error:
print(error)
conn.rollback()
finally:
conn.close()
-
數據庫模型文件展示(models.py)
from . import db
# 時刻與評論數量關系模型
class HourCount(db.Model):
__tablename__ = 'db_hour_count'
id = db.Column(db.Integer,primary_key=True,autoincrement=True)
hour = db.Column(db.Integer,nullable=False)
count = db.Column(db.Integer,nullable=False)
# 評價星級與評價數量關系模型
class StarCount(db.Model):
__tablename__ = 'db_star_count'
id = db.Column(db.Integer,primary_key=True,autoincrement=True)
star = db.Column(db.Integer,nullable=False)
count = db.Column(db.Integer,nullable=False)
# 評分均值與隨時間關系模型
class StarAvg(db.Model):
__tablename__ = 'db_star_avg'
id = db.Column(db.Integer,primary_key=True,autoincrement=True)
hour = db.Column(db.Integer,nullable=False)
star_avg = db.Column(db.Float,nullable=False)
-
配置文件代碼展示(config.py)
class Config(object):
SECRET_KEY = 'ma5211314'
SQLALCHEMY_DATABASE_URI = 'mysql://root:123456@localhost:3306/cateye'
SQLALCHEMY_TRACK_MODIFICATIONS = True
class DevelopmentConfig(Config):
DEBUG = True
class ProjectConfig(Config):
pass
# 采用映射方式方便后續調用配置類
config_map = {
'develop':DevelopmentConfig,
'project':ProjectConfig
}
-
主工程目錄代碼展示(api_1_0/ init .py)
from flask import Flask
from flask_sqlalchemy import SQLAlchemy
import pymysql
from config import config_map
# python3的pymysql取代了mysqldb庫 為了防止出現 ImportError: No module named ‘MySQLdb’的錯誤
pymysql.install_as_MySQLdb()
db = SQLAlchemy()
# 采用工廠模式創建app實例
def create_app(mode='develop'):
app = Flask(__name__)
# 加載配置類
config = config_map[mode]
app.config.from_object(config)
# 加載數據庫
db.init_app(app)
# 導入藍圖
from . import view
app.register_blueprint(view.blue,url_prefix='/show')
return app
-
主程序文件代碼展示(manager.py)
from api_1_0 import create_app,db
from flask_script import Manager
from flask_migrate import Migrate,MigrateCommand
from flask import render_template
app = create_app()
manager = Manager(app)
Migrate(app,db)
manager.add_command('db',MigrateCommand)
# 首頁
@app.route('/')
def index():
return render_template('index.html')
if __name__ == '__main__':
manager.run()
-
視圖文件代碼展示(api_1_0/views/_ init _.py,show.py)
_ init _.py
from flask import Blueprint
# 為了在主程序運行時能夠加載到模型類
from api_1_0 import model
blue = Blueprint('show',__name__)
# 導入定義的視圖函數
from . import show
show.py
from . import blue
from api_1_0.models import HourCount,StarCount,StarAvg
from flask import render_template
# 詞雲圖
@blue.route('/drawCloud')
def drawCloud():
return render_template('drawCloud.html')
# 評論數量隨時間的變化折線圖和評論均值隨時間的變化折線圖
@blue.route('/drawLine')
def drawLine():
hour_count = HourCount.query.all()
hour_star_avg = StarAvg.query.all()
# 構造折線圖所需數據 兩個數組
hour = [i.hour for i in hour_count]
count = [i.count for i in hour_count]
star_avg = [i.star_avg for i in hour_star_avg]
return render_template('drawLine.html',**locals())
# 不同星級評價的數量占比圖
@blue.route('/drawPie')
def drawPie():
star_count = StarCount.query.all()
# 構造畫餅圖所需數據格式數組嵌套字典
data = [{'name':i.star,'value':i.count} for i in star_count]
return render_template('drawPie.html',**locals())
-
主頁展示(index.html)
主頁簡單創建了三個超鏈接指向對應的圖表
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <title>首頁說明</title> <style> .container{ width: 100%; height: 600px; padding: 40px; line-height: 60px; } ul{ margin: auto; width: 60%; } </style> </head> <body> <div class="container"> <ul> <li><a href="http://127.0.0.1:5000/show/drawCloud" target="_blank"><h3>評論標題詞雲 </h3></a></li> <li><a href="http://127.0.0.1:5000/show/drawLine" target="_blank"><h3>評論數量隨時間的變化折線圖&評論均值隨時間的變化折線圖</h3></a></li> <li><a href="http://127.0.0.1:5000/show/drawPie" target="_blank"><h3>不同星級評價的數量占比圖</h3></a></li> </ul> </div> </body> </html>
-
模板文件代碼展示(drawCloud.html,drawLine.htm,drawPie.html)
drawCloud.html
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <title>詞雲圖</title> <style> .container{ width: 1000px; margin: auto; padding-top: 50px; } img{ width: 800px; height: 600px; } </style> </head> <body> <div class="container"> # 圖片地址為數據分析中生成的保存的詞雲圖 <img src="../static/images/wordCount.jpg"> </div> </body> </html>
結論: 除了電影和一些常用詞之后,英雄、歷史、戰爭的詞頻最高,所以可以初步判斷八佰是以歷史戰爭為題材的電影
drawLine.html
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <title>評論數量隨時間的變化折線圖和評論均值隨時間的變化折線圖</title> <script src="../static/js/echarts.min.js"></script> <script src="../static/theme/vintage.js"></script> <style> .chart_group{ width: 100%; display: flex; justify-content: space-between; padding: 50px; box-sizing: border-box; } </style> </head> <body> <div class="chart_group"> <div class="chat1" style="width: 700px;height: 500px"></div> <div class="chat2" style="width: 700px;height: 500px"></div> </div> <script> var myCharts1 = echarts.init(document.querySelector('.chat1'),'vintage') var myCharts2 = echarts.init(document.querySelector('.chat2'),'vintage') var hour = {{ hour|tojson }} var count = {{ count|tojson }} var star_avg = {{star_avg|tojson }} function getOptions(category,data,title_text,desc){ var option = { title:{ text:title_text, textStyle:{ fontFamily:'楷體', fontSize:21 } }, xAxis:{ type:'category', data: category, axisLabel:{ interval:0, rotate:40, margin:10 } }, yAxis:{ type:'value', scale:true }, legend:{ name:[desc], top:20 }, tooltip:{ trigger:'axis', triggerOn:'mousemove', formatter:function(arg){ return '評論時刻:'+arg[0].name+':00'+'<br>'+'評論數量:'+arg[0].value } }, series:[ { name:desc, type:'line', data:data, label:{ show:true }, smooth:true, markLine:{ data:[ { name:'平均值', type:'average', label: { show:true, formatter:function(arg) { return arg.name+':\n'+arg.value } } } ] }, markPoint:{ data:[ { name:'最大值', type:'max', symbolSize:[40,40], symbolOffset:[0,-20], label:{ show:true, formatter:function (arg) { return arg.name } } }, { name:'最小值', type:'min', symbolSize:[40,40], symbolOffset:[0,-20], label:{ show:true, formatter:function (arg) { return arg.name } } } ] } } ] } return option } var option1 = getOptions(hour,count,'評論數量隨時間的變化','評論數量') var option2 = getOptions(hour,star_avg,'評論均值隨時間的變化','評論均值') myCharts1.setOption(option1) myCharts2.setOption(option2) </script> </body> </html>
結論: 影迷們大都在21點至凌晨1點左右觀影評論,可見影迷們大都是夜貓子,而凌晨1點至中午11點影評的評分普遍低於平均分,熬夜和中午吃飯之前影迷們的大都處在一個心情不大好的狀態,所以一點要少熬夜多吃飯
draw.html
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <title>不同星級評價的數量占比圖</title> <script src="../static/js/echarts.min.js"></script> <script src="../static/theme/vintage.js"></script> </head> <body> <div class="chat" style="width: 800px;height: 600px;margin: auto"></div> <script> var myCharts = echarts.init(document.querySelector('.chat'),'vintage') var data = {{ data|tojson }} var option = { title:{ text:'不同星級評價的數量占比', textStyle:{ fontFamily:'楷體', fontSize:21 } }, legend:{ name:['星級'], left:40, bottom:40, orient:'verticals', formatter:function(arg) { return arg+'星' } }, tooltip:{ trigger:'item', triggerOn:'mousemove', formatter:function(arg) { return '評價星級:'+arg.name+'星'+'<br>'+'評價數量:'+arg.value+'<br>'+'評價占比:'+arg.percent+"%" }, }, series:[ { name:'星級', type:'pie', data:data, label:{ show:true, formatter:function (arg) { return arg.name+'星' } }, {#roseType:'radius',#} //南丁格爾玫瑰圖 radius:['50%','80%'], selectedMode:'multiple', selectedOffset:20 } ] } myCharts.setOption(option) </script> </body> </html>
結論: 影迷們對八佰這部電影的評價普遍很高,5星和4星評論占總評分的80%左右,可見這部電影的受歡迎程度。
以下是項目源碼,希望能夠幫助你們,如有疑問,下方評論