問題
Tcmalloc 由於使用了精心設計的 cache,進而大大提高了malloc 和 free 的效率,但由之而來的是 cache 大小的難以把控,容易出現 cache 占用過大,進而 OOM 的問題,tcmalloc 提供了兩個方案解決這個問題
-
展現 tcmalloc 維護的內存狀態解決
//virtual void GetStats(char* buffer, int buffer_length); MallocExtension::instance()->GetStats(buf, length);
解決
1.ReleaseFreeMemory
作用
- 一次性,全部釋放 tcmalloc 的 cache 內存
函數實現
// Same as ReleaseToSystem() but release as much memory as possible.
virtual void ReleaseFreeMemory();
// 實現
void MallocExtension::ReleaseFreeMemory() {
ReleaseToSystem(static_cast<size_t>(-1)); // SIZE_T_MAX
}
//加鎖釋放,盡可能多的cache
virtual void ReleaseToSystem(size_t num_bytes) {
SpinLockHolder h(Static::pageheap_lock());
if (num_bytes <= extra_bytes_released_) {
// We released too much on a prior call, so don't release any
// more this time.
extra_bytes_released_ = extra_bytes_released_ - num_bytes;
return;
}
num_bytes = num_bytes - extra_bytes_released_;
// num_bytes might be less than one page. If we pass zero to
// ReleaseAtLeastNPages, it won't do anything, so we release a whole
// page now and let extra_bytes_released_ smooth it out over time.
Length num_pages = max<Length>(num_bytes >> kPageShift, 1);
size_t bytes_released = Static::pageheap()->ReleaseAtLeastNPages(
num_pages) << kPageShift;
if (bytes_released > num_bytes) {
extra_bytes_released_ = bytes_released - num_bytes;
} else {
// The PageHeap wasn't able to release num_bytes. Don't try to
// compensate with a big release next time. Specifically,
// ReleaseFreeMemory() calls ReleaseToSystem(LONG_MAX).
extra_bytes_released_ = 0;
}
}
劣勢
- 對 page heap 加鎖,cache 較大時,占用鎖時間較長,可能阻塞較長時間
- 對 tcmalloc 源碼的閱讀,會在之后的博客中分享
2.SetMemoryReleaseRate
作用
- 控制釋放 cache 給 OS的速度
函數實現
// Sets the rate at which we release unused memory to the system.
// Zero means we never release memory back to the system. Increase
// this flag to return memory faster; decrease it to return memory
// slower. Reasonable rates are in the range [0,10]. (Currently
// only implemented in tcmalloc).
virtual void SetMemoryReleaseRate(double rate);
// 實現
virtual void SetMemoryReleaseRate(double rate) {
FLAGS_tcmalloc_release_rate = rate;
}
rate的含義
- 官方建議 [0 , 10]
- 0 代表不歸還,數字越大歸還越快,但最大是多少呢?以及是否是線性的呢?
// Incrementally release some memory to the system.
// IncrementalScavenge(n) is called whenever n pages are freed.
// 大意是,釋放 n 個 pages 時, 通過 IncrementalScavenge 歸還一定大小 cache 給 OS
void IncrementalScavenge(Length n);
// 實現
void PageHeap::IncrementalScavenge(Length n) {
// Fast path; not yet time to release memory
// 需要等待的 pages 數,每釋放 scavenge_counter_ 個 pages 歸還一次給OS
scavenge_counter_ -= n;
if (scavenge_counter_ >= 0) return; // Not yet time to scavenge
const double rate = FLAGS_tcmalloc_release_rate;
if (rate <= 1e-6) {
// 0 不釋放
scavenge_counter_ = kDefaultReleaseDelay;
return;
}
++stats_.scavenge_count;
Length released_pages = ReleaseAtLeastNPages(1);
if (released_pages == 0) {
scavenge_counter_ = kDefaultReleaseDelay;
} else {
// Compute how long to wait until we return memory.
// FLAGS_tcmalloc_release_rate==1 means wait for 1000 pages
// after releasing one page.
// 反比關系,1000 / rate 為要等待的 pages,所以 rate 可以理解為 [1, 1000]
// 1 時等待1000個pages, 1000時等待1個page
const double mult = 1000.0 / rate;
double wait = mult * static_cast<double>(released_pages);
if (wait > kMaxReleaseDelay) {
// Avoid overflow and bound to reasonable range.
wait = kMaxReleaseDelay;
}
scavenge_counter_ = static_cast<int64_t>(wait);
}
}
- 由此可見,建議在 [0, 1000] 配置
- 1 時歸還率為 1 / 1000, 1000時歸還率為 50%
- 數字越大越好,非線性反比關系