CompletableFuture是java8引入的一個很實用的特性,可以視為Future的升級版本,以下幾個示例可以說明其主要用法(注:示例來自《java8實戰》一書第11章)
一、引子:化同步為異步
為了方便描述,假設"查詢電商報價"的場景:有一個商家Shop類,對外提供價格查詢的服務getPrice
import java.util.Random;
import java.util.concurrent.CompletableFuture;
import java.util.concurrent.Future;
public class Shop {
public String name;
private Random random = new Random();
public Shop(String name) {
this.name = name;
}
/**
* 計算價格
*
* @param product
* @return
*/
private double calculatePrice(String product) {
delay();
return random.nextDouble() * product.charAt(0) + product.charAt(1);
}
/**
* 模擬計算價格的耗時
*/
private static void delay() {
try {
Thread.sleep(1000L);
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
}
/**
* 對外提供的報價服務方法
*
* @param product
* @return
*/
public double getPrice(String product) {
return calculatePrice(product);
}
}
平台可以調用getPrice方法獲取某個商家的報價:
public static void main(String[] args) {
testSyncGetPrice();
}
private static void doSomethingElse() {
System.out.println("do something else");
}
public static void testSyncGetPrice() {
Shop shop = new Shop("BestShop");
long start = System.currentTimeMillis();
System.out.printf("Price is %.2f\n", shop.getPrice("my favorite product"));
doSomethingElse();
System.out.println("(SyncGetPrice) Invocation returned after : " + (System.currentTimeMillis() - start) + " ms\n");
}
顯然,這是1個同步調用,在shop.getPrice()方法執行完前,后面的doSomethingElse()只能等着,輸出結果如下:
Price is 222.01 do something else (SyncGetPrice) Invocation returned after : 1015 ms
為了消除同步阻塞,可以借用Future將同步的getPrice方法調用,轉換成異步。
public Future<Double> getPriceAsync(String product) {
Future<Double> submit = Executors.newFixedThreadPool(1).submit(() -> calculatePrice(product));
return submit;
}
上面的submit方法,最終調用的是java.util.concurrent.AbstractExecutorService#submit(java.util.concurrent.Callable<T>)
/**
* @throws RejectedExecutionException {@inheritDoc}
* @throws NullPointerException {@inheritDoc}
*/
public <T> Future<T> submit(Callable<T> task) {
if (task == null) throw new NullPointerException();
RunnableFuture<T> ftask = newTaskFor(task);
execute(ftask);
return ftask;
}
如果繼續追下去的話,execute方法,又是調用的java.util.concurrent.ThreadPoolExecutor#execute方法,創建一個線程來異步執行。將同步轉換成異步后,doSomethingElse方法,在getPriceAsync執行期間,就能並發執行了。
public static void doSomethingElse() {
System.out.println("do something else");
}
public static void testAsyncGetPrice() {
Shop shop = new Shop("BestShop");
long start = System.currentTimeMillis();
Future<Double> futurePrice = shop.getPriceAsync("my favorite product");
doSomethingElse();
try {
Double price = futurePrice.get();
System.out.printf("Price is %.2f\n", price);
} catch (Exception e) {
throw new RuntimeException(e);
}
System.out.println("(AsyncGetPrice) Invocation returned after : " + (System.currentTimeMillis() - start) + " ms\n");
}
public static void main(String[] args) {
testAsyncGetPrice();
}
輸出結果:
do something else Price is 201.69 (AsyncGetPrice) Invocation returned after : 1111 ms
二、同步轉換成異步的其它方式
CompletableFuture出現后,"同步調用"轉換成"異步調用"的方式,有了新的選擇:
public Future<Double> getPriceAsync1(String product) {
CompletableFuture<Double> futurePrice = new CompletableFuture<Double>();
new Thread(() -> {
try {
double price = calculatePrice(product);
futurePrice.complete(price);
} catch (Exception e) {
futurePrice.completeExceptionally(e);
}
}).start();
return futurePrice;
}
public Future<Double> getPriceAsync2(String product) {
return CompletableFuture.supplyAsync(() -> calculatePrice(product));
}
上面這2種方法效果等價,顯然第2種supplyAsync的寫法更簡潔。需要說明的是:CompletableFuture內部其實也是使用線程池來處理的,只不過這個線程池的類型默認是ForkJoinPool,這一點可以從java.util.concurrent.CompletableFuture#asyncPool源碼看出來:
/**
* Default executor -- ForkJoinPool.commonPool() unless it cannot
* support parallelism.
*/
private static final Executor asyncPool = useCommonPool ?
ForkJoinPool.commonPool() : new ThreadPerTaskExecutor();
三、CompletableFuture中使用自定義線程池
如果需要查詢報價的商家有很多,比如:6個,逐一同步調用getPrice方法,時長大約就是6個商家的總時長累加
static List<Shop> shops = Arrays.asList(
new Shop("1-shop"),
new Shop("2-shop"),
new Shop("3-shop"),
new Shop("4-shop"),
new Shop("5-shop"),
new Shop("6-shop")
);
public static void main(String[] args) {
testFindPrices();
}
public static List<String> findPrices(String product) {
return shops.stream()
.map(shop -> String.format("%s price is %.2f", shop.name, shop.getPrice(product)))
.collect(Collectors.toList());
}
輸出:
[1-shop price is 180.36, 2-shop price is 206.13, 3-shop price is 205.49, 4-shop price is 184.62, 5-shop price is 222.73, 6-shop price is 143.19] do something else (findPrices-Stream) Invocation returned after : 6102 ms
這顯然太慢了,要知道現代計算機都是多核cpu體系,很容易想到把stream換成parallelStream,可以充分發揮多核優勢:
public static List<String> findPricesParallel(String product) {
return shops.parallelStream()
.map(shop -> String.format("%s price is %.2f", shop.name, shop.getPrice(product)))
.collect(Collectors.toList());
}
還是剛才的測試場景,這時輸出結果類似下面這樣:(注:測試機器為mac 4核筆記本)
[1-shop price is 137.42, 2-shop price is 168.93, 3-shop price is 182.89, 4-shop price is 154.60, 5-shop price is 192.70, 6-shop price is 179.06] do something else (findPrices-parallelStream) Invocation returned after : 2102 ms
比剛才好多了,耗時從6s縮短到2s,但仔細想一想:6個商家的getPrice處理,分攤到4個核上,還是有2個核會出現阻塞(即:平均1個核並行處理1個task,6-4=2,仍然有2個task要排隊)。
如果換成用CompletableFuture默認的ForkJoinPool呢,性能會不會好一些?
public static List<String> findPricesFuture() {
List<CompletableFuture<String>> priceFutures = shops.parallelStream()
.map(shop -> CompletableFuture.supplyAsync(() ->
String.format("%s price is %.2f", shop.name, shop.getPrice("myPhone27"))))
.collect(Collectors.toList());
return priceFutures.parallelStream().map(CompletableFuture::join).collect(Collectors.toList());
}
public static void testFindPricesCompletableFuture() {
long start = System.currentTimeMillis();
System.out.printf(findPricesFuture().toString() + "\n");
doSomethingElse();
System.out.println("(findPrices-CompletableFuture) Invocation returned after : " + (System.currentTimeMillis() - start) + " ms\n");
}
輸出結果(注:上面代碼中的parallelStream換成stream,下面的輸出結果也差不多)
[1-shop price is 168.57, 2-shop price is 159.43, 3-shop price is 200.08, 4-shop price is 165.64, 5-shop price is 195.11, 6-shop price is 206.83] do something else (findPrices-CompletableFuture) Invocation returned after : 2092 ms
從結果上看,使用CompletableFuture與使用僅使用parallelStream的耗時差不多,並沒有性能上的提升。原因在於默認的ForkJoinPool,其默認線程數也是跟CPU核數相關的。在這個場景中,我們至少要6個線程(即:shops.size()),才能讓6個商家的getPrice並發處理。按這個思路,我們可以自定義一個線程池,然后傳入supplyAsync方法中:
private static final Executor executor =
Executors.newFixedThreadPool(Math.min(shops.size(), 100),
new ThreadFactory() {
public Thread newThread(Runnable r) {
Thread t = new Thread(r);
t.setDaemon(true);
return t;
}
});
public static List<String> findPricesFutureWithExecutor() {
List<CompletableFuture<String>> priceFutures = shops.stream()
.map(shop -> CompletableFuture.supplyAsync(() ->
String.format("%s price is %.2f", shop.name, shop.getPrice("myPhone27")), executor))
.collect(Collectors.toList());
return priceFutures.stream().map(CompletableFuture::join).collect(Collectors.toList());
}
public static void testFindPricesExecutor() {
long start = System.currentTimeMillis();
System.out.printf(findPricesFutureWithExecutor().toString() + "\n");
doSomethingElse();
System.out.println("(findPrices-FutureWithExecutor) Invocation returned after : " + (System.currentTimeMillis() - start) + " ms\n");
}
public static void main(String[] args) {
testFindPricesExecutor();
}
輸出結果如下:
[1-shop price is 177.26, 2-shop price is 227.09, 3-shop price is 179.98, 4-shop price is 127.19, 5-shop price is 208.93, 6-shop price is 229.91] do something else (findPrices-FutureWithExecutor) Invocation returned after : 1121 ms
從耗時上看,僅相當於單個商家getPrice的耗時,已經達到最佳效果。
四、多個異步操作組合
前面提到的商家報價場景,我們再加點料,引入“打折”功能。先把shop調整下:
package future;
import java.util.Random;
import java.util.concurrent.CompletableFuture;
import java.util.concurrent.Future;
public class Shop {
public String name;
private static Random random = new Random();
public Shop(String name) {
this.name = name;
}
private double calculatePrice(String product) {
randomDelay();
return random.nextDouble() * product.charAt(0) + product.charAt(1);
}
public static void randomDelay() {
int delay = 500 + random.nextInt(2000);
try {
Thread.sleep(delay);
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
}
/**
* 查詢“(原始)價格”及"對應的折扣"
*
* @param product
* @return
*/
public String getPriceWithDiscount(String product) {
double price = calculatePrice(product);
Discount.Code code = Discount.Code.values()[random.nextInt(Discount.Code.values().length)];
String result = String.format("%s:%.2f:%s", name, price, code);
System.out.println(result);
return result;
}
}
主要有2處改動:
1 是delay方法引入了隨機數,模擬不同商家查詢價格時,有着不同的處理時間,顯得更真實。
2 是getPriceWithDiscount方法,返回的價格不再是1個double,而是類似下面這樣的字符串
1-shop:212.78:NONE 2-shop:182.22:DIAMOND 3-shop:148.91:PLATINUM 4-shop:203.78:SILVER 5-shop:152.75:DIAMOND 6-shop:212.43:NONE
同時包括了原始的價格,以及打折等級(無折扣、白銀等級、鑽石等級...之類),這里有一個Discount類,代碼如下:
package future;
import java.math.BigDecimal;
public class Discount {
/**
* 打折類型
*/
public enum Code {
NONE(0), SILVER(5), GOLD(10), PLATINUM(15), DIAMOND(20);
/**
* 折扣百分比
*/
private final int percentage;
Code(int percentage) {
this.percentage = percentage;
}
}
/**
* 計算折扣后的價格
* @param price
* @param code
* @return
*/
private static double apply(double price, Code code) {
Shop.randomDelay();
return format(price * (100 - code.percentage) / 100);
}
private static double format(double d) {
BigDecimal decimal = new BigDecimal(d);
return decimal.setScale(2, BigDecimal.ROUND_HALF_DOWN).doubleValue();
}
/**
* 應用折扣,輸出最后的處理結果
*
* @param quote
* @return
*/
public static String applyDiscount(Quote quote) {
return quote.shopName + " price is " + apply(quote.price, quote.discountCode);
}
}
apply模擬了計算折扣價時,需要一定的耗時randomDelay(),而getPriceWithDiscount返回的字符串,還需要有1個Quota類專門解析其中的原始價格以及折扣等級
/**
* 帶折扣的報價
*/
public class Quote {
public final String shopName;
public final double price;
public final Discount.Code discountCode;
public Quote(String shopName, double price, Discount.Code code) {
this.shopName = shopName;
this.price = price;
this.discountCode = code;
}
/**
* 解析價格結果
*
* @param s
* @return
*/
public static Quote parse(String s) {
String[] split = s.split(":");
String shopName = split[0];
double price = Double.parseDouble(split[1]);
Discount.Code discountCode = Discount.Code.valueOf(split[2]);
return new Quote(shopName, price, discountCode);
}
}
引入折扣功能后,原來的“查詢商家價格”,可分解成3個步驟:
1. 先調用shop.getPriceWithDiscount 返回“原始價格及折扣等級”字符串
2. 解析1中返回的字符串,將price與discount信息提取出來,並最終封裝成Quota對象
3. 調用Discount的applyDiscount,返回最終打折后的價格信息
而且,上面的步驟,3依賴2的完成,2依賴1的完成,用標准寫出來的話,大致是下面這個樣子:
public static List<String> findDiscountPrices() {
return shops.stream()
.map(shop -> shop.getPriceWithDiscount("myPhone27"))
.map(Quote::parse)
.map(Discount::applyDiscount)
.collect(Collectors.toList());
}
public static void testFindDiscountPrices() {
long start = System.currentTimeMillis();
System.out.printf(findDiscountPrices().toString() + "\n");
doSomethingElse();
System.out.println("(findDiscountPrices-stream) Invocation returned after : " + (System.currentTimeMillis() - start) + " ms\n");
}
public static void main(String[] args) {
testFindDiscountPrices();
}
這是同步的調用方式,可想而知,最終耗時會很大:
1-shop:157.77:DIAMOND 2-shop:138.03:DIAMOND 3-shop:204.60:DIAMOND 4-shop:202.52:NONE 5-shop:155.14:GOLD 6-shop:224.15:SILVER [1-shop price is 126.22, 2-shop price is 110.42, 3-shop price is 163.68, 4-shop price is 202.52, 5-shop price is 139.63, 6-shop price is 212.94] do something else (findDiscountPrices-stream) Invocation returned after : 16449 ms
使用CompletableFuture,可以把1-2-3 這3個步驟都轉換成異步,且保證相互之間的依賴關系,代碼如下:
public static List<String> findDiscountPricesFuture() {
List<CompletableFuture<String>> list = shops.stream()
.map(shop -> CompletableFuture.supplyAsync(() -> shop.getPriceWithDiscount("myPhone27"), executor))
.map(f -> f.thenApply(Quote::parse))
.map(f -> f.thenCompose(quote -> CompletableFuture.supplyAsync(() -> Discount.applyDiscount(quote), executor)))
.collect(Collectors.toList());
return list.stream().map(CompletableFuture::join).collect(Collectors.toList());
}
輸出結果如下:

從結果上看,確實已經是異步了(1個線程處理1個商家的getPrice及Discount計算),整體耗時也大幅下降。但是有一個細節問題,6個商家的最終結果(即:最后的[...]列表輸出),是等所有異步操作都執行完,1次性輸出的,這在實際應用中,意味着,最終買家能多快看到價格輸出,取決於最慢的那個商家,這是不能接受的,理想情況下,應該是哪個商家的服務快,能先計算出結果 ,就應該第1時間展示這家店的價格。
修正后的代碼如下:
public static void findDiscountPricesFuture() {
long start = System.currentTimeMillis();
CompletableFuture[] futureArray = shops.stream()
.map(shop -> CompletableFuture.supplyAsync(() -> shop.getPriceWithDiscount("myPhone27"), executor))
.map(f -> f.thenApply(Quote::parse))
.map(f -> f.thenCompose(quote -> CompletableFuture.supplyAsync(() -> Discount.applyDiscount(quote), executor)))
.map(f -> f.thenAccept(s -> System.out.println(s + " (done in " + (System.currentTimeMillis() - start) + " ms)")))
.toArray(size -> new CompletableFuture[size]);
CompletableFuture.allOf(futureArray).join();
}
解釋:主要是利用了CompletableFuture.allOf()方法,該方法會把數組結果,按完成時間快慢,快的先返回。

從運行效果上看,最終的報價輸出,不再是等6個商家全計算好才返回。
