摘要
本篇來用OpenCV實現Halcon中一個簡單的PCB印刷缺陷檢測實例。 Halcon中對應的例子為pcb_inspection.hdev。並自定義一個正八邊形結構元素進行開運算,閉運算,然后做差將缺陷標記顯示。
原圖如下:

Halcon代碼比較簡單,這里也貼出來,短短13行:
read_image (Image, 'pcb') dev_close_window () get_image_size (Image, Width, Height) dev_open_window (0, 0, Width, Height, 'black', WindowHandle) dev_display (Image) * detect defects ... gray_opening_shape (Image, ImageOpening, 7, 7, 'octagon') gray_closing_shape (Image, ImageClosing, 7, 7, 'octagon') dyn_threshold (ImageOpening, ImageClosing, RegionDynThresh, 75, 'not_equal') dev_display (Image) dev_set_color ('red') dev_set_draw ('margin') dev_display (RegionDynThresh)
opencv實現:
(一)自定義正八邊形結構元素
Mat gray,src_open,src_close,dst; Mat src = imread("D:/opencv練習圖片/pcb缺陷檢測.png"); imshow("原圖", src); cvtColor(src, gray, COLOR_RGB2GRAY); Mat kernel = Mat::ones(Size(7, 7), CV_8UC1); kernel.at<uchar>(0, 0) = 0; kernel.at<uchar>(0, 1) = 0; kernel.at<uchar>(0, 5) = 0; kernel.at<uchar>(0, 6) = 0; kernel.at<uchar>(1, 0) = 0; kernel.at<uchar>(1, 6) = 0; kernel.at<uchar>(5, 0) = 0; kernel.at<uchar>(5, 6) = 0; kernel.at<uchar>(6, 0) = 0; kernel.at<uchar>(6, 1) = 0; kernel.at<uchar>(6, 5) = 0; kernel.at<uchar>(6, 6) = 0; cout << kernel << endl;

這里對矩陣的分別賦值,其實有一個填充函數fillPloy()(只需輸入頂點坐標即可)
(二)對圖像開運算,閉運算,做差
morphologyEx(gray, src_open, MORPH_OPEN, kernel); imshow("開運算", src_open); morphologyEx(gray, src_close, MORPH_CLOSE, kernel); imshow("閉運算", src_close); absdiff(src_open, src_close, dst); imshow("做差", dst);
開運算:

閉運算:

二者做差:

可以看到,白色的點就是缺陷的位置。
(三)二值化,尋找輪廓,顯示
threshold(dst, dst, 80, 255, THRESH_BINARY); vector<vector<Point>>contours; findContours(dst, contours, RETR_EXTERNAL, CHAIN_APPROX_NONE, Point()); drawContours(src, contours, -1, Scalar(0, 0, 255), 2, 8); imshow("顯示缺陷", src);

參考於:OpenCV與AI深度學習
