🎯Some basic relationship between pixels——像素之間的基本關系
Neighbors and Connectivity——領域與聯通
Neighbors of a pixel——像素的領域
4-neighbor——4領域,即\(N_{4}(p)\)

Diagonal neighbors——對角領域,即\(N_{D}(p)\)

8-neighbor——8領域,即\(N_{8}(p)\)

Connectivity——連通
相鄰僅考慮像素間的空間關系
連通:空間上相鄰且像素灰度值相似
兩個像素是否連通:
- 是否接觸(相鄰)
- 灰度值是否滿足某個特定的相似准則:灰度值相等或同在一個灰度值集合中
三種連通
假設V為灰度值集合,V ={1}:
- 4-連通: 2個像素 p 和 r 在V 中取值且 r 在\(N_{4}(p)\)中
- 8-連通:2個像素 p 和 r 在V 中取值且 r 在\(N_{8}(p)\)中
- m-連通(混合連通):2個像素 p 和 r 在V 中取值,且滿足下列條件之一
① r 在\(N_{4}(p)\)中
② r 在\(N_{D}(p)\)中且集合\(N_{4}(p)\)∩\(N_{4}(r)\)是空集

Path——通路
像素\(p(x, y)\)到像素\(q(s, t)\)的一條通路由一系列具有坐標\((x_0, y_0)\), \((x_1, y_1)\) ,…,\((x_i , y_i)\) ,…,\((x_n , y_n)\)的獨立像素組成。這里 \((x, y)\)= \((x_0, y_0)\), \((x_n , y_n)\)= \((s, t)\),且 \((x_i , y_i)\)與 \((x_{i-1}, y_{i-1})\)連通。其中\(1≤i≤n\),\(n\)為通路長度。
通路種類:4-通路(4-path);8-通路(8-path);m-通路(m-path)
例題:

Distance Measures——距離度量
Definition:For pixels \(p, q, z\), with coordinates \((x, y), (s, t), (v, w)\) ,respectively, if
給出三個像素\(p, q, z\),坐標分別為\((x, y), (s, t), (v, w)\),則
- \(D(p, q)≥0\) [\(D(p, q)= 0\), 當且僅當 p=q]
- \(D(p, q)=D(q, p)\)
- \(D(p, z)≤D(p, q) + D(q, z)\)
then D is a distance function or metric.
如過D滿足以上三個條件,則稱D為距離函數或距離度量
⚠️D距離與像素的點坐標相關
⚠️D距離與像素間的連通性無關
🎯Euclidean distance De——歐式距離(默認使用的距離函數)
Definition:
已知\(p(x,y)\),\(q(s,t)\)
For this distance measure, the pixels having a distance less than or equal to some value \(r\) from \((x,y)\) are the points contained in a disk of radius \(r\) centered at \((x,y)\).
距離點\((x,y)\),\(r\)距離的點組成一個圓
\(D_4\) distance (also called city-block distance)——\(D_4\)距離,即街區距離
The pixels having a \(D_4\) distance from \((x, y)\) less than or equal to some value r form a diamond centered at \((x, y)\) .
The Pixels with \(D_4=1\) are the \(N_4\) of \((x, y)\).

\(D_8\) distance (chessboard distance)——\(D_8\)距離,即棋盤距離
The pixels with \(D_8\) distance from\((x, y)\) less than or equal to some value r form a square centered at \((x, y)\).
The pixels with \(D_8=1\) are the N8 of \((x, y)\).

