概述
國家統計局的公開數據真實性強,宏觀且與我們的生活息息相關。
因此,采集此數據作為數據分析實驗的數據再好不過。
采集過程
采集各種公開數據的第一步就是分析網頁。
上面的圖是國家統計局年度數據的界面。 左邊是數據分類的樹形菜單,右邊是每個菜單點擊之后顯示的數據,可以設置年份來過濾數據。
采集數據分類樹
根據頁面的情況,首先,我們需要采集樹形菜單中的數據,然后再根據菜單的分類來依次采集右邊的數據。 這樣可以避免采集的遺漏。
爬蟲采集數據一般有 2 種情況:
- 采集 html 頁面,然后分析其中的結構,提取出數據
- 查看是否存在獲取數據的 API,直接從 API 中提取數據
通過分析網頁的加載過程,發現國際統計局的數據是有 API 的,這就節省了很多時間。 API 信息如下:
host: "https://data.stats.gov.cn/easyquery.htm"
method: POST
params: id=zb&dbcode=hgnd&wdcode=zb&m=getTree
通過 python 的 requests 庫模擬 POST 請求就可以獲取到樹形菜單中的數據了。
def init_tree(tree_data_path):
data = get_tree_data()
with open(tree_data_path, "wb") as f:
pickle.dump(data, f)
def get_tree_data(id="zb"):
r = requests.post(f"{host}?id={id}&dbcode=hgnd&wdcode=zb&m=getTree", verify=False)
logging.debug("access url: %s", r.url)
data = r.json()
for node in data:
if node["isParent"]:
node["children"] = get_tree_data(node["id"])
else:
node["children"] = []
return data
直接調用上面的 init_tree 函數即可,樹形菜單會以 json 格式序列化到 tree_data_path 中。
序列化的目的是為了后面采集數據時可以反復使用,不用每次都去采集這個樹形菜單。(畢竟菜單是基本不變的)
根據分類采集數據
有了分類的菜單,下一步就是采集具體的數據。 同樣,通過分析網頁,數據也是有 API 的,不用采集 html 頁面再提取數據。
host: "https://data.stats.gov.cn/easyquery.htm"
method: GET
params: 參數有變量,具體參見代碼
采集數據稍微復雜一些,不像采集樹形菜單那樣訪問一次 API 即可,而是遍歷樹形菜單,根據菜單的信息訪問 API。
# -*- coding: utf-8 -*-
import logging
import os
import pickle
import time
import pandas as pd
import requests
host = "https://data.stats.gov.cn/easyquery.htm"
tree_data_path = "./tree.data"
data_dir = "./data"
def data(sj="1978-"):
tree_data = []
with open(tree_data_path, "rb") as f:
tree_data = pickle.load(f)
traverse_tree_data(tree_data, sj)
def traverse_tree_data(nodes, sj):
for node in nodes:
# 葉子節點上獲取數據
if node["isParent"]:
traverse_tree_data(node["children"], sj)
else:
write_csv(node["id"], sj)
def write_csv(nodeId, sj):
fp = os.path.join(data_dir, nodeId + ".csv")
# 文件是否存在, 如果存在, 不爬取
if os.path.exists(fp):
logging.info("文件已存在: %s", fp)
return
statData = get_stat_data(sj, nodeId)
if statData is None:
logging.error("NOT FOUND data for %s", nodeId)
return
# csv 數據
csvData = {"zb": [], "value": [], "sj": [], "zbCN": [], "sjCN": []}
for node in statData["datanodes"]:
csvData["value"].append(node["data"]["data"])
for wd in node["wds"]:
csvData[wd["wdcode"]].append(wd["valuecode"])
# 指標編碼含義
zbDict = {}
sjDict = {}
for node in statData["wdnodes"]:
if node["wdcode"] == "zb":
for zbNode in node["nodes"]:
zbDict[zbNode["code"]] = {
"name": zbNode["name"],
"cname": zbNode["cname"],
"unit": zbNode["unit"],
}
if node["wdcode"] == "sj":
for sjNode in node["nodes"]:
sjDict[sjNode["code"]] = {
"name": sjNode["name"],
"cname": sjNode["cname"],
"unit": sjNode["unit"],
}
# csv 數據中加入 zbCN 和 sjCN
for zb in csvData["zb"]:
zbCN = (
zbDict[zb]["cname"]
if zbDict[zb]["unit"] == ""
else zbDict[zb]["cname"] + "(" + zbDict[zb]["unit"] + ")"
)
csvData["zbCN"].append(zbCN)
for sj in csvData["sj"]:
csvData["sjCN"].append(sjDict[sj]["cname"])
# write csv file
df = pd.DataFrame(
csvData,
columns=["sj", "sjCN", "zb", "zbCN", "value"],
)
df.to_csv(fp, index=False)
def get_stat_data(sj, zb):
payload = {
"dbcode": "hgnd",
"rowcode": "zb",
"m": "QueryData",
"colcode": "sj",
"wds": "[]",
"dfwds": '[{"wdcode":"zb","valuecode":"'
+ zb
+ '"},{"wdcode":"sj","valuecode":"'
+ sj
+ '"}]',
}
r = requests.get(host, params=payload, verify=False)
logging.debug("access url: %s", r.url)
time.sleep(2)
logging.debug(r.text)
resp = r.json()
if resp["returncode"] == 200:
return resp["returndata"]
else:
logging.error("error: %s", resp)
return None
代碼說明:
- tree_data_path = "./tree.data" : 這個是第一步序列化出的樹形菜單數據
- 采集的數據按照樹形菜單中的每個菜單的編號生成相應的 csv
- 樹形菜單的每個葉子節點才有數據,非葉子節點不用采集
- 調用 data 函數來采集數據,默認是從 1978 年的數據開始采集的
采集結果
本次采集的結果有 1917 個不同種類的數據。
下載地址: https://databook.top/data/de9d8cc6-2bab-4ef1-b09f-8dcf83c32648/detail