100個問題匯總
1、多線程有什么用?
一個可能在很多人看來很扯淡的一個問題:我會用多線程就好了,還管它有什么用?在我看來,這個回答更扯淡。所謂"知其然知其所以然","會用"只是"知其然","為什么用"才是"知其所以然",只有達到"知其然知其所以然"的程度才可以說是把一個知識點運用自如。OK,下面說說我對這個問題的看法:
(1)發揮多核CPU的優勢
隨着工業的進步,現在的筆記本、台式機乃至商用的應用服務器至少也都是雙核的,4核、8核甚至16核的也都不少見,如果是單線程的程序,那么在雙核CPU上就浪費了50%,在4核CPU上就浪費了75%。單核CPU上所謂的"多線程"那是假的多線程,同一時間處理器只會處理一段邏輯,只不過線程之間切換得比較快,看着像多個線程"同時"運行罷了。多核CPU上的多線程才是真正的多線程,它能讓你的多段邏輯同時工作,多線程,可以真正發揮出多核CPU的優勢來,達到充分利用CPU的目的。
(2)防止阻塞
從程序運行效率的角度來看,單核CPU不但不會發揮出多線程的優勢,反而會因為在單核CPU上運行多線程導致線程上下文的切換,而降低程序整體的效率。但是單核CPU我們還是要應用多線程,就是為了防止阻塞。試想,如果單核CPU使用單線程,那么只要這個線程阻塞了,比方說遠程讀取某個數據吧,對端遲遲未返回又沒有設置超時時間,那么你的整個程序在數據返回回來之前就停止運行了。多線程可以防止這個問題,多條線程同時運行,哪怕一條線程的代碼執行讀取數據阻塞,也不會影響其它任務的執行。
(3)便於建模
這是另外一個沒有這么明顯的優點了。假設有一個大的任務A,單線程編程,那么就要考慮很多,建立整個程序模型比較麻煩。但是如果把這個大的任務A分解成幾個小任務,任務B、任務C、任務D,分別建立程序模型,並通過多線程分別運行這幾個任務,那就簡單很多了。
2、創建線程的方式
比較常見的一個問題了,一般就是兩種:
(1)繼承Thread類
(2)實現Runnable接口
至於哪個好,不用說肯定是后者好,因為實現接口的方式比繼承類的方式更靈活,也能減少程序之間的耦合度,面向接口編程也是設計模式6大原則的核心。
3、start()方法和run()方法的區別
只有調用了start()方法,才會表現出多線程的特性,不同線程的run()方法里面的代碼交替執行。如果只是調用run()方法,那么代碼還是同步執行的,必須等待一個線程的run()方法里面的代碼全部執行完畢之后,另外一個線程才可以執行其run()方法里面的代碼。
4、Runnable接口和Callable接口的區別
有點深的問題了,也看出一個Java程序員學習知識的廣度。
Runnable接口中的run()方法的返回值是void,它做的事情只是純粹地去執行run()方法中的代碼而已;Callable接口中的call()方法是有返回值的,是一個泛型,和Future、FutureTask配合可以用來獲取異步執行的結果。
這其實是很有用的一個特性,因為多線程相比單線程更難、更復雜的一個重要原因就是因為多線程充滿着未知性,某條線程是否執行了?某條線程執行了多久?某條線程執行的時候我們期望的數據是否已經賦值完畢?無法得知,我們能做的只是等待這條多線程的任務執行完畢而已。而Callable+Future/FutureTask卻可以獲取多線程運行的結果,可以在等待時間太長沒獲取到需要的數據的情況下取消該線程的任務,真的是非常有用。
5、CyclicBarrier和CountDownLatch的區別
兩個看上去有點像的類,都在java.util.concurrent下,都可以用來表示代碼運行到某個點上,二者的區別在於:
(1)CyclicBarrier的某個線程運行到某個點上之后,該線程即停止運行,直到所有的線程都到達了這個點,所有線程才重新運行;CountDownLatch則不是,某線程運行到某個點上之后,只是給某個數值-1而已,該線程繼續運行
(2)CyclicBarrier只能喚起一個任務,CountDownLatch可以喚起多個任務
(3)CyclicBarrier可重用,CountDownLatch不可重用,計數值為0該CountDownLatch就不可再用了
6、volatile關鍵字的作用
一個非常重要的問題,是每個學習、應用多線程的Java程序員都必須掌握的。理解volatile關鍵字的作用的前提是要理解Java內存模型,這里就不講Java內存模型了,可以參見第31點,volatile關鍵字的作用主要有兩個:
(1)多線程主要圍繞可見性和原子性兩個特性而展開,使用volatile關鍵字修飾的變量,保證了其在多線程之間的可見性,即每次讀取到volatile變量,一定是最新的數據
(2)代碼底層執行不像我們看到的高級語言----Java程序這么簡單,它的執行是Java代碼-->字節碼-->根據字節碼執行對應的C/C++代碼-->C/C++代碼被編譯成匯編語言-->和硬件電路交互,現實中,為了獲取更好的性能JVM可能會對指令進行重排序,多線程下可能會出現一些意想不到的問題。使用volatile則會對禁止語義重排序,當然這也一定程度上降低了代碼執行效率
從實踐角度而言,volatile的一個重要作用就是和CAS結合,保證了原子性,詳細的可以參見java.util.concurrent.atomic包下的類,比如AtomicInteger。
7、什么是線程安全
又是一個理論的問題,各式各樣的答案有很多,我給出一個個人認為解釋地最好的:如果你的代碼在多線程下執行和在單線程下執行永遠都能獲得一樣的結果,那么你的代碼就是線程安全的。
這個問題有值得一提的地方,就是線程安全也是有幾個級別的:
(1)不可變
像String、Integer、Long這些,都是final類型的類,任何一個線程都改變不了它們的值,要改變除非新創建一個,因此這些不可變對象不需要任何同步手段就可以直接在多線程環境下使用
(2)絕對線程安全
不管運行時環境如何,調用者都不需要額外的同步措施。要做到這一點通常需要付出許多額外的代價,Java中標注自己是線程安全的類,實際上絕大多數都不是線程安全的,不過絕對線程安全的類,Java中也有,比方說CopyOnWriteArrayList、CopyOnWriteArraySet
(3)相對線程安全
相對線程安全也就是我們通常意義上所說的線程安全,像Vector這種,add、remove方法都是原子操作,不會被打斷,但也僅限於此,如果有個線程在遍歷某個Vector、有個線程同時在add這個Vector,99%的情況下都會出現ConcurrentModificationException,也就是fail-fast機制。
(4)線程非安全
這個就沒什么好說的了,ArrayList、LinkedList、HashMap等都是線程非安全的類
8、Java中如何獲取到線程dump文件
死循環、死鎖、阻塞、頁面打開慢等問題,打線程dump是最好的解決問題的途徑。所謂線程dump也就是線程堆棧,獲取到線程堆棧有兩步:
(1)獲取到線程的pid,可以通過使用jps命令,在Linux環境下還可以使用ps -ef | grep java
(2)打印線程堆棧,可以通過使用jstack pid命令,在Linux環境下還可以使用kill -3 pid
另外提一點,Thread類提供了一個getStackTrace()方法也可以用於獲取線程堆棧。這是一個實例方法,因此此方法是和具體線程實例綁定的,每次獲取獲取到的是具體某個線程當前運行的堆棧,
9、一個線程如果出現了運行時異常會怎么樣
如果這個異常沒有被捕獲的話,這個線程就停止執行了。另外重要的一點是:如果這個線程持有某個某個對象的監視器,那么這個對象監視器會被立即釋放
10、如何在兩個線程之間共享數據
通過在線程之間共享對象就可以了,然后通過wait/notify/notifyAll、await/signal/signalAll進行喚起和等待,比方說阻塞隊列BlockingQueue就是為線程之間共享數據而設計的
11、sleep方法和wait方法有什么區別
這個問題常問,sleep方法和wait方法都可以用來放棄CPU一定的時間,不同點在於如果線程持有某個對象的監視器,sleep方法不會放棄這個對象的監視器,wait方法會放棄這個對象的監視器
12、生產者消費者模型的作用是什么
這個問題很理論,但是很重要:
(1)通過平衡生產者的生產能力和消費者的消費能力來提升整個系統的運行效率,這是生產者消費者模型最重要的作用
(2)解耦,這是生產者消費者模型附帶的作用,解耦意味着生產者和消費者之間的聯系少,聯系越少越可以獨自發展而不需要收到相互的制約
13、ThreadLocal有什么用
簡單說ThreadLocal就是一種以空間換時間的做法,在每個Thread里面維護了一個以開地址法實現的ThreadLocal.ThreadLocalMap,把數據進行隔離,數據不共享,自然就沒有線程安全方面的問題了
14、為什么wait()方法和notify()/notifyAll()方法要在同步塊中被調用
這是JDK強制的,wait()方法和notify()/notifyAll()方法在調用前都必須先獲得對象的鎖
15、wait()方法和notify()/notifyAll()方法在放棄對象監視器時有什么區別
wait()方法和notify()/notifyAll()方法在放棄對象監視器的時候的區別在於:
wait()方法立即釋放對象監視器,notify()/notifyAll()方法則會等待線程剩余代碼執行完畢才會放棄對象監視器。
16、為什么要使用線程池
避免頻繁地創建和銷毀線程,達到線程對象的重用。另外,使用線程池還可以根據項目靈活地控制並發的數目。
17、怎么檢測一個線程是否持有對象監視器
我也是在網上看到一道多線程面試題才知道有方法可以判斷某個線程是否持有對象監視器:Thread類提供了一個holdsLock(Object obj)方法,當且僅當對象obj的監視器被某條線程持有的時候才會返回true,注意這是一個static方法,這意味着"某條線程"指的是當前線程。
18、synchronized和ReentrantLock的區別
synchronized是和if、else、for、while一樣的關鍵字,ReentrantLock是類,這是二者的本質區別。既然ReentrantLock是類,那么它就提供了比
synchronized更多更靈活的特性,可以被繼承、可以有方法、可以有各種各樣的類變量,ReentrantLock比synchronized的擴展性體現在幾點上:
(1)ReentrantLock可以對獲取鎖的等待時間進行設置,這樣就避免了死鎖
(2)ReentrantLock可以獲取各種鎖的信息
(3)ReentrantLock可以靈活地實現多路通知
另外,二者的鎖機制其實也是不一樣的。ReentrantLock底層調用的是Unsafe的park方法加鎖,synchronized操作的應該是對象頭中mark word,這點我不能確定。
19、ConcurrentHashMap的並發度是什么
ConcurrentHashMap的並發度就是segment的大小,默認為16,這意味着最多同時可以有16條線程操作ConcurrentHashMap,這也是ConcurrentHashMap對Hashtable的最大優勢,任何情況下,Hashtable能同時有兩條線程獲取Hashtable中的數據嗎?
20、ReadWriteLock是什么
首先明確一下,不是說ReentrantLock不好,只是ReentrantLock某些時候有局限。如果使用ReentrantLock,可能本身是為了防止線程A在寫數據、線程B在讀數據造成的數據不一致,但這樣,如果線程C在讀數據、線程D也在讀數據,讀數據是不會改變數據的,沒有必要加鎖,但是還是加鎖了,降低了程序的性能。
因為這個,才誕生了讀寫鎖ReadWriteLock。ReadWriteLock是一個讀寫鎖接口,ReentrantReadWriteLock是ReadWriteLock接口的一個具體實現,實現了讀寫的分離,讀鎖是共享的,寫鎖是獨占的,讀和讀之間不會互斥,讀和寫、寫和讀、寫和寫之間才會互斥,提升了讀寫的性能。
21、FutureTask是什么
這個其實前面有提到過,FutureTask表示一個異步運算的任務。FutureTask里面可以傳入一個Callable的具體實現類,可以對這個異步運算的任務的結果進行等待獲取、判斷是否已經完成、取消任務等操作。當然,由於FutureTask也是Runnable接口的實現類,所以FutureTask也可以放入線程池中。
22、Linux環境下如何查找哪個線程使用CPU最長
這是一個比較偏實踐的問題,這種問題我覺得挺有意義的。可以這么做:
(1)獲取項目的pid,jps或者ps -ef | grep java,這個前面有講過
(2)top -H -p pid,順序不能改變
這樣就可以打印出當前的項目,每條線程占用CPU時間的百分比。注意這里打出的是LWP,也就是操作系統原生線程的線程號,我筆記本山沒有部署Linux環境下的Java工程,因此沒有辦法截圖演示,網友朋友們如果公司是使用Linux環境部署項目的話,可以嘗試一下。
使用"top -H -p pid"+"jps pid"可以很容易地找到某條占用CPU高的線程的線程堆棧,從而定位占用CPU高的原因,一般是因為不當的代碼操作導致了死循環。
最后提一點,"top -H -p pid"打出來的LWP是十進制的,"jps pid"打出來的本地線程號是十六進制的,轉換一下,就能定位到占用CPU高的線程的當前線程堆棧了。
23、Java編程寫一個會導致死鎖的程序
第一次看到這個題目,覺得這是一個非常好的問題。很多人都知道死鎖是怎么一回事兒:線程A和線程B相互等待對方持有的鎖導致程序無限死循環下去。當然也僅限於此了,問一下怎么寫一個死鎖的程序就不知道了,這種情況說白了就是不懂什么是死鎖,懂一個理論就完事兒了,實踐中碰到死鎖的問題基本上是看不出來的。
真正理解什么是死鎖,這個問題其實不難,幾個步驟:
(1)兩個線程里面分別持有兩個Object對象:lock1和lock2。這兩個lock作為同步代碼塊的鎖;
(2)線程1的run()方法中同步代碼塊先獲取lock1的對象鎖,Thread.sleep(xxx),時間不需要太多,50毫秒差不多了,然后接着獲取lock2的對象鎖。這么做主要是為了防止線程1啟動一下子就連續獲得了lock1和lock2兩個對象的對象鎖
(3)線程2的run)(方法中同步代碼塊先獲取lock2的對象鎖,接着獲取lock1的對象鎖,當然這時lock1的對象鎖已經被線程1鎖持有,線程2肯定是要等待線程1釋放lock1的對象鎖的
這樣,線程1"睡覺"睡完,線程2已經獲取了lock2的對象鎖了,線程1此時嘗試獲取lock2的對象鎖,便被阻塞,此時一個死鎖就形成了。代碼就不寫了,占的篇幅有點多,Java多線程7:死鎖這篇文章里面有,就是上面步驟的代碼實現。
24、怎么喚醒一個阻塞的線程
如果線程是因為調用了wait()、sleep()或者join()方法而導致的阻塞,可以中斷線程,並且通過拋出InterruptedException來喚醒它;如果線程遇到了IO阻塞,無能為力,因為IO是操作系統實現的,Java代碼並沒有辦法直接接觸到操作系統。
25、不可變對象對多線程有什么幫助
前面有提到過的一個問題,不可變對象保證了對象的內存可見性,對不可變對象的讀取不需要進行額外的同步手段,提升了代碼執行效率。
26、什么是多線程的上下文切換
多線程的上下文切換是指CPU控制權由一個已經正在運行的線程切換到另外一個就緒並等待獲取CPU執行權的線程的過程。
27、如果你提交任務時,線程池隊列已滿,這時會發生什么
這里區分一下:
-
如果使用的是無界隊列LinkedBlockingQueue,也就是無界隊列的話,沒關系,繼續添加任務到阻塞隊列中等待執行,因為LinkedBlockingQueue可以近乎認為是一個無窮大的隊列,可以無限存放任務
-
如果使用的是有界隊列比如ArrayBlockingQueue,任務首先會被添加到ArrayBlockingQueue中,ArrayBlockingQueue滿了,會根據maximumPoolSize的值增加線程數量,如果增加了線程數量還是處理不過來,ArrayBlockingQueue繼續滿,那么則會使用拒絕策略RejectedExecutionHandler處理滿了的任務,默認是AbortPolicy
28、Java中用到的線程調度算法是什么
搶占式。一個線程用完CPU之后,操作系統會根據線程優先級、線程飢餓情況等數據算出一個總的優先級並分配下一個時間片給某個線程執行。
29、Thread.sleep(0)的作用是什么
這個問題和上面那個問題是相關的,我就連在一起了。由於Java采用搶占式的線程調度算法,因此可能會出現某條線程常常獲取到CPU控制權的情況,為了讓某些優先級比較低的線程也能獲取到CPU控制權,可以使用Thread.sleep(0)手動觸發一次操作系統分配時間片的操作,這也是平衡CPU控制權的一種操作。
30、什么是自旋
很多synchronized里面的代碼只是一些很簡單的代碼,執行時間非常快,此時等待的線程都加鎖可能是一種不太值得的操作,因為線程阻塞涉及到用戶態和內核態切換的問題。既然synchronized里面的代碼執行得非常快,不妨讓等待鎖的線程不要被阻塞,而是在synchronized的邊界做忙循環,這就是自旋。如果做了多次忙循環發現還沒有獲得鎖,再阻塞,這樣可能是一種更好的策略。
31、什么是Java內存模型
Java內存模型定義了一種多線程訪問Java內存的規范。Java內存模型要完整講不是這里幾句話能說清楚的,我簡單總結一下Java內存模型的幾部分內容:
(1)Java內存模型將內存分為了主內存和工作內存。類的狀態,也就是類之間共享的變量,是存儲在主內存中的,每次Java線程用到這些主內存中的變量的時候,會讀一次主內存中的變量,並讓這些內存在自己的工作內存中有一份拷貝,運行自己線程代碼的時候,用到這些變量,操作的都是自己工作內存中的那一份。在線程代碼執行完畢之后,會將最新的值更新到主內存中去
(2)定義了幾個原子操作,用於操作主內存和工作內存中的變量
(3)定義了volatile變量的使用規則
(4)happens-before,即先行發生原則,定義了操作A必然先行發生於操作B的一些規則,比如在同一個線程內控制流前面的代碼一定先行發生於控制流后面的代碼、一個釋放鎖unlock的動作一定先行發生於后面對於同一個鎖進行鎖定lock的動作等等,只要符合這些規則,則不需要額外做同步措施,如果某段代碼不符合所有的happens-before規則,則這段代碼一定是線程非安全的
32、什么是CAS
CAS,全稱為Compare and Swap,即比較-替換。假設有三個操作數:內存值V、舊的預期值A、要修改的值B,當且僅當預期值A和內存值V相同時,才會將內存值修改為B並返回true,否則什么都不做並返回false。當然CAS一定要volatile變量配合,這樣才能保證每次拿到的變量是主內存中最新的那個值,否則舊的預期值A對某條線程來說,永遠是一個不會變的值A,只要某次CAS操作失敗,永遠都不可能成功。
33、什么是樂觀鎖和悲觀鎖
(1)樂觀鎖:就像它的名字一樣,對於並發間操作產生的線程安全問題持樂觀狀態,樂觀鎖認為競爭不總是會發生,因此它不需要持有鎖,將比較-替換這兩個動作作為一個原子操作嘗試去修改內存中的變量,如果失敗則表示發生沖突,那么就應該有相應的重試邏輯。
(2)悲觀鎖:還是像它的名字一樣,對於並發間操作產生的線程安全問題持悲觀狀態,悲觀鎖認為競爭總是會發生,因此每次對某資源進行操作時,都會持有一個獨占的鎖,就像synchronized,不管三七二十一,直接上了鎖就操作資源了。
34、什么是AQS
簡單說一下AQS,AQS全稱為AbstractQueuedSychronizer,翻譯過來應該是抽象隊列同步器。
如果說java.util.concurrent的基礎是CAS的話,那么AQS就是整個Java並發包的核心了,ReentrantLock、CountDownLatch、Semaphore等等都用到了它。AQS實際上以雙向隊列的形式連接所有的Entry,比方說ReentrantLock,所有等待的線程都被放在一個Entry中並連成雙向隊列,前面一個線程使用ReentrantLock好了,則雙向隊列實際上的第一個Entry開始運行。
AQS定義了對雙向隊列所有的操作,而只開放了tryLock和tryRelease方法給開發者使用,開發者可以根據自己的實現重寫tryLock和tryRelease方法,以實現自己的並發功能。
35、單例模式的線程安全性
老生常談的問題了,首先要說的是單例模式的線程安全意味着:某個類的實例在多線程環境下只會被創建一次出來。單例模式有很多種的寫法,我總結一下:
(1)餓漢式單例模式的寫法:線程安全
(2)懶漢式單例模式的寫法:非線程安全
(3)雙檢鎖單例模式的寫法:線程安全
36、Semaphore有什么作用
Semaphore就是一個信號量,它的作用是限制某段代碼塊的並發數。
Semaphore有一個構造函數,可以傳入一個int型整數n,表示某段代碼最多只有n個線程可以訪問,如果超出了n,那么請等待,等到某個線程執行完畢這段代碼塊,下一個線程再進入。由此可以看出如果Semaphore構造函數中傳入的int型整數n=1,相當於變成了一個synchronized了。
37、Hashtable的size()方法中明明只有一條語句"return count",為什么還要做同步?
這是我之前的一個困惑,不知道大家有沒有想過這個問題。某個方法中如果有多條語句,並且都在操作同一個類變量,那么在多線程環境下不加鎖,勢必會引發線程安全問題,這很好理解,但是size()方法明明只有一條語句,為什么還要加鎖?
關於這個問題,在慢慢地工作、學習中,有了理解,主要原因有兩點:
(1)同一時間只能有一條線程執行固定類的同步方法,但是對於類的非同步方法,可以多條線程同時訪問。所以,這樣就有問題了,可能線程A在執行Hashtable的put方法添加數據,線程B則可以正常調用size()方法讀取Hashtable中當前元素的個數,那讀取到的值可能不是最新的,可能線程A添加了完了數據,但是沒有對size++,線程B就已經讀取size了,那么對於線程B來說讀取到的size一定是不准確的。而給size()方法加了同步之后,意味着線程B調用size()方法只有在線程A調用put方法完畢之后才可以調用,這樣就保證了線程安全性
(2)CPU執行代碼,執行的不是Java代碼,這點很關鍵,一定得記住。Java代碼最終是被翻譯成機器碼執行的,機器碼才是真正可以和硬件電路交互的代碼。即使你看到Java代碼只有一行,甚至你看到Java代碼編譯之后生成的字節碼也只有一行,也不意味着對於底層來說這句語句的操作只有一個。一句"return count"假設被翻譯成了三句匯編語句執行,一句匯編語句和其機器碼做對應,完全可能執行完第一句,線程就切換了。
38、線程類的構造方法、靜態塊是被哪個線程調用的
這是一個非常刁鑽和狡猾的問題。請記住:線程類的構造方法、靜態塊是被new這個線程類所在的線程所調用的,而run方法里面的代碼才是被線程自身所調用的。
如果說上面的說法讓你感到困惑,那么我舉個例子,假設Thread2中new了Thread1,main函數中new了Thread2,那么:
(1)Thread2的構造方法、靜態塊是main線程調用的,Thread2的run()方法是Thread2自己調用的
(2)Thread1的構造方法、靜態塊是Thread2調用的,Thread1的run()方法是Thread1自己調用的
39、同步方法和同步塊,哪個是更好的選擇
同步塊,這意味着同步塊之外的代碼是異步執行的,這比同步整個方法更提升代碼的效率。請知道一條原則:同步的范圍越小越好。
借着這一條,我額外提一點,雖說同步的范圍越少越好,但是在Java虛擬機中還是存在着一種叫做鎖粗化的優化方法,這種方法就是把同步范圍變大。這是有用的,比方說StringBuffer,它是一個線程安全的類,自然最常用的append()方法是一個同步方法,我們寫代碼的時候會反復append字符串,這意味着要進行反復的加鎖->解鎖,這對性能不利,因為這意味着Java虛擬機在這條線程上要反復地在內核態和用戶態之間進行切換,因此Java虛擬機會將多次append方法調用的代碼進行一個鎖粗化的操作,將多次的append的操作擴展到append方法的頭尾,變成一個大的同步塊,這樣就減少了加鎖-->解鎖的次數,有效地提升了代碼執行的效率。
40、高並發、任務執行時間短的業務怎樣使用線程池?並發不高、任務執行時間長的業務怎樣使用線程池?並發高、業務執行時間長的業務怎樣使用線程池?
這是我在並發編程網上看到的一個問題,把這個問題放在最后一個,希望每個人都能看到並且思考一下,因為這個問題非常好、非常實際、非常專業。關於這個問題,個人看法是:
(1)高並發、任務執行時間短的業務,線程池線程數可以設置為CPU核數+1,減少線程上下文的切換
(2)並發不高、任務執行時間長的業務要區分開看:
a)假如是業務時間長集中在IO操作上,也就是IO密集型的任務,因為IO操作並不占用CPU,所以不要讓所有的CPU閑下來,可以加大線程池中的線程數目,讓CPU處理更多的業務
b)假如是業務時間長集中在計算操作上,也就是計算密集型任務,這個就沒辦法了,和(1)一樣吧,線程池中的線程數設置得少一些,減少線程上下文的切換
(3)並發高、業務執行時間長,解決這種類型任務的關鍵不在於線程池而在於整體架構的設計,看看這些業務里面某些數據是否能做緩存是第一步,增加服務器是第二步,至於線程池的設置,設置參考(2)。
最后,業務執行時間長的問題,也可能需要分析一下,看看能不能使用中間件對任務進行拆分和解耦。
41、為什么使用Executor框架?
每次執行任務創建線程 new Thread()比較消耗性能,創建一個線程是比較耗時、耗資源的。
調用 new Thread()創建的線程缺乏管理,被稱為野線程,而且可以無限制的創建,線程之間的相互競爭會導致過多占用系統資源而導致系統癱瘓,還有線程之間的頻繁交替也會消耗很多系統資源。
接使用new Thread() 啟動的線程不利於擴展,比如定時執行、定期執行、定時定期執行、線程中斷等都不便實現。
42、在Java中Executor和Executors的區別?
Executors 工具類的不同方法按照我們的需求創建了不同的線程池,來滿足業務的需求。
Executor 接口對象能執行我們的線程任務。ExecutorService接口繼承了Executor接口並進行了擴展,提供了更多的方法我們能獲得任務執行的狀態並且可以獲取任務的返回值。
使用ThreadPoolExecutor 可以創建自定義線程池。Future 表示異步計算的結果,他提供了檢查計算是否完成的方法,以等待計算的完成,並可以使用get()方法獲取計算的結果。
43、什么是原子操作?在Java Concurrency API中有哪些原子類(atomic classes)?
原子操作(atomic operation)意為”不可被中斷的一個或一系列操作” 。處理器使用基於對緩存加鎖或總線加鎖的方式來實現多處理器之間的原子操作。
在Java中可以通過鎖和循環CAS的方式來實現原子操作。CAS操作——Compare & Set,或是 Compare & Swap,現在幾乎所有的CPU指令都支持CAS的原子操作。
原子操作是指一個不受其他操作影響的操作任務單元。原子操作是在多線程環境下避免數據不一致必須的手段。
int++並不是一個原子操作,所以當一個線程讀取它的值並加1時,另外一個線程有可能會讀到之前的值,這就會引發錯誤。
為了解決這個問題,必須保證增加操作是原子的,在JDK1.5之前我們可以使用同步技術來做到這一點。到JDK1.5,java.util.concurrent.atomic包提供了int和long類型的原子包裝類,它們可以自動的保證對於他們的操作是原子的並且不需要使用同步。
java.util.concurrent這個包里面提供了一組原子類。其基本的特性就是在多線程環境下,當有多個線程同時執行這些類的實例包含的方法時,具有排他性。
即當某個線程進入方法,執行其中的指令時,不會被其他線程打斷,而別的線程就像自旋鎖一樣,一直等到該方法執行完成,才由JVM從等待隊列中選擇一個另一個線程進入,這只是一種邏輯上的理解。
-
原子類:AtomicBoolean,AtomicInteger,AtomicLong,AtomicReference
-
原子數組:AtomicIntegerArray,AtomicLongArray,AtomicReferenceArray
-
原子屬性更新器:AtomicLongFieldUpdater,AtomicIntegerFieldUpdater,AtomicReferenceFieldUpdater
解決ABA問題的原子類:AtomicMarkableReference(通過引入一個boolean來反映中間有沒有變過),AtomicStampedReference(通過引入一個int來累加來反映中間有沒有變過)
44、Java Concurrency API中的Lock接口(Lock interface)是什么?對比同步它有什么優勢?
Lock接口比同步方法和同步塊提供了更具擴展性的鎖操作。他們允許更靈活的結構,可以具有完全不同的性質,並且可以支持多個相關類的條件對象。
它的優勢有:
-
可以使鎖更公平
-
可以讓線程嘗試獲取鎖,並在無法獲取鎖的時候立即返回或者等待一段時間
-
可以在不同的范圍,以不同的順序獲取和釋放鎖
整體上來說Lock是synchronized的擴展版,Lock提供了無條件的、可輪詢的(tryLock方法)、定時的(tryLock帶參方法)、可中斷的(lockInterruptibly)、可多條件隊列的(newCondition方法)鎖操作。
另外Lock的實現類基本都支持非公平鎖(默認)和公平鎖,synchronized只支持非公平鎖,當然,在大部分情況下,非公平鎖是高效的選擇。
45、什么是Executors框架?
Executor框架是一個根據一組執行策略調用,調度,執行和控制的異步任務的框架。
無限制的創建線程會引起應用程序內存溢出。所以創建一個線程池是個更好的的解決方案,因為可以限制線程的數量並且可以回收再利用這些線程。利用Executors框架可以非常方便的創建一個線程池。
46、什么是阻塞隊列?阻塞隊列的實現原理是什么?如何使用阻塞隊列來實現生產者-消費者模型?
阻塞隊列(BlockingQueue)是一個支持兩個附加操作的隊列。
這兩個附加的操作是:在隊列為空時,獲取元素的線程會等待隊列變為非空。當隊列滿時,存儲元素的線程會等待隊列可用。
阻塞隊列常用於生產者和消費者的場景,生產者是往隊列里添加元素的線程,消費者是從隊列里拿元素的線程。阻塞隊列就是生產者存放元素的容器,而消費者也只從容器里拿元素。
JDK7提供了7個阻塞隊列。分別是:
-
ArrayBlockingQueue :一個由數組結構組成的有界阻塞隊列。
-
LinkedBlockingQueue :一個由鏈表結構組成的有界阻塞隊列。
-
PriorityBlockingQueue :一個支持優先級排序的無界阻塞隊列。
-
DelayQueue:一個使用優先級隊列實現的無界阻塞隊列。
-
SynchronousQueue:一個不存儲元素的阻塞隊列。
-
LinkedTransferQueue:一個由鏈表結構組成的無界阻塞隊列。
-
LinkedBlockingDeque:一個由鏈表結構組成的雙向阻塞隊列。
Java 5之前實現同步存取時,可以使用普通的一個集合,然后在使用線程的協作和線程同步可以實現生產者,消費者模式,主要的技術就是用好,wait ,notify,notifyAll,sychronized這些關鍵字。而在java 5之后,可以使用阻塞隊列來實現,此方式大大簡少了代碼量,使得多線程編程更加容易,安全方面也有保障。
BlockingQueue接口是Queue的子接口,它的主要用途並不是作為容器,而是作為線程同步的的工具,因此他具有一個很明顯的特性,當生產者線程試圖向BlockingQueue放入元素時,如果隊列已滿,則線程被阻塞,當消費者線程試圖從中取出一個元素時,如果隊列為空,則該線程會被阻塞,正是因為它所具有這個特性,所以在程序中多個線程交替向BlockingQueue中放入元素,取出元素,它可以很好的控制線程之間的通信。
阻塞隊列使用最經典的場景就是socket客戶端數據的讀取和解析,讀取數據的線程不斷將數據放入隊列,然后解析線程不斷從隊列取數據解析。
47、什么是Callable和Future?
Callable接口類似於Runnable,從名字就可以看出來了,但是Runnable不會返回結果,並且無法拋出返回結果的異常,而Callable功能更強大一些,被線程執行后,可以返回值,這個返回值可以被Future拿到,也就是說,Future可以拿到異步執行任務的返回值。可以認為是帶有回調的Runnable。
Future接口表示異步任務,是還沒有完成的任務給出的未來結果。所以說Callable用於產生結果,Future用於獲取結果。
48、什么是FutureTask?使用ExecutorService啟動任務。
在Java並發程序中FutureTask表示一個可以取消的異步運算。它有啟動和取消運算、查詢運算是否完成和取回運算結果等方法。只有當運算完成的時候結果才能取回,如果運算尚未完成get方法將會阻塞。
一個FutureTask對象可以對調用了Callable和Runnable的對象進行包裝,由於FutureTask也是調用了Runnable接口所以它可以提交給Executor來執行。
49、什么是並發容器的實現?
何為同步容器:可以簡單地理解為通過synchronized來實現同步的容器,如果有多個線程調用同步容器的方法,它們將會串行執行。比如Vector,Hashtable,以及Collections.synchronizedSet,synchronizedList等方法返回的容器。
可以通過查看Vector,Hashtable等這些同步容器的實現代碼,可以看到這些容器實現線程安全的方式就是將它們的狀態封裝起來,並在需要同步的方法上加上關鍵字synchronized。
並發容器使用了與同步容器完全不同的加鎖策略來提供更高的並發性和伸縮性,例如在ConcurrentHashMap中采用了一種粒度更細的加鎖機制,可以稱為分段鎖,在這種鎖機制下,允許任意數量的讀線程並發地訪問map,並且執行讀操作的線程和寫操作的線程也可以並發的訪問map,同時允許一定數量的寫操作線程並發地修改map,所以它可以在並發環境下實現更高的吞吐量。
50、多線程同步和互斥有幾種實現方法,都是什么?
線程同步是指線程之間所具有的一種制約關系,一個線程的執行依賴另一個線程的消息,當它沒有得到另一個線程的消息時應等待,直到消息到達時才被喚醒。
線程互斥是指對於共享的進程系統資源,在各單個線程訪問時的排它性。當有若干個線程都要使用某一共享資源時,任何時刻最多只允許一個線程去使用,其它要使用該資源的線程必須等待,直到占用資源者釋放該資源。線程互斥可以看成是一種特殊的線程同步。
線程間的同步方法大體可分為兩類:用戶模式和內核模式。顧名思義,內核模式就是指利用系統內核對象的單一性來進行同步,使用時需要切換內核態與用戶態,而用戶模式就是不需要切換到內核態,只在用戶態完成操作。
用戶模式下的方法有:原子操作(例如一個單一的全局變量),臨界區。內核模式下的方法有:事件,信號量,互斥量。
51、什么是競爭條件?你怎樣發現和解決競爭?
當多個進程都企圖對共享數據進行某種處理,而最后的結果又取決於進程運行的順序時,則我們認為這發生了競爭條件(race condition)。
52、為什么我們調用start()方法時會執行run()方法,為什么我們不能直接調用run()方法?
當你調用start()方法時你將創建新的線程,並且執行在run()方法里的代碼。
但是如果你直接調用run()方法,它不會創建新的線程也不會執行調用線程的代碼,只會把run方法當作普通方法去執行。
53、Java中你怎樣喚醒一個阻塞的線程?
在Java發展史上曾經使用suspend()、resume()方法對於線程進行阻塞喚醒,但隨之出現很多問題,比較典型的還是死鎖問題。
解決方案可以使用以對象為目標的阻塞,即利用Object類的wait()和notify()方法實現線程阻塞。
首先,wait、notify方法是針對對象的,調用任意對象的wait()方法都將導致線程阻塞,阻塞的同時也將釋放該對象的鎖,相應地,調用任意對象的notify()方法則將隨機解除該對象阻塞的線程,但它需要重新獲取改對象的鎖,直到獲取成功才能往下執行;
其次,wait、notify方法必須在synchronized塊或方法中被調用,並且要保證同步塊或方法的鎖對象與調用wait、notify方法的對象是同一個,如此一來在調用wait之前當前線程就已經成功獲取某對象的鎖,執行wait阻塞后當前線程就將之前獲取的對象鎖釋放。
54、在Java中CycliBarriar和CountdownLatch有什么區別?
CyclicBarrier可以重復使用,而CountdownLatch不能重復使用。
Java的concurrent包里面的CountDownLatch其實可以把它看作一個計數器,只不過這個計數器的操作是原子操作,同時只能有一個線程去操作這個計數器,也就是同時只能有一個線程去減這個計數器里面的值。
你可以向CountDownLatch對象設置一個初始的數字作為計數值,任何調用這個對象上的await()方法都會阻塞,直到這個計數器的計數值被其他的線程減為0為止。
所以在當前計數到達零之前,await 方法會一直受阻塞。之后,會釋放所有等待的線程,await的所有后續調用都將立即返回。這種現象只出現一次——計數無法被重置。如果需要重置計數,請考慮使用 CyclicBarrier。
CountDownLatch的一個非常典型的應用場景是:有一個任務想要往下執行,但必須要等到其他的任務執行完畢后才可以繼續往下執行。假如我們這個想要繼續往下執行的任務調用一個CountDownLatch對象的await()方法,其他的任務執行完自己的任務后調用同一個CountDownLatch對象上的countDown()方法,這個調用await()方法的任務將一直阻塞等待,直到這個CountDownLatch對象的計數值減到0為止。
CyclicBarrier一個同步輔助類,它允許一組線程互相等待,直到到達某個公共屏障點 (common barrier point)。在涉及一組固定大小的線程的程序中,這些線程必須不時地互相等待,此時 CyclicBarrier 很有用。因為該 barrier 在釋放等待線程后可以重用,所以稱它為循環 的 barrier。
55、什么是不可變對象,它對寫並發應用有什么幫助?
不可變對象(Immutable Objects)即對象一旦被創建它的狀態(對象的數據,也即對象屬性值)就不能改變,反之即為可變對象(Mutable Objects)。
不可變對象的類即為不可變類(Immutable Class)。Java平台類庫中包含許多不可變類,如String、基本類型的包裝類、BigInteger和BigDecimal等。
不可變對象天生是線程安全的。它們的常量(域)是在構造函數中創建的。既然它們的狀態無法修改,這些常量永遠不會變。
不可變對象永遠是線程安全的。只有滿足如下狀態,一個對象才是不可變的;它的狀態不能在創建后再被修改;所有域都是final類型;並且, 它被正確創建(創建期間沒有發生this引用的逸出)。
56、什么是多線程中的上下文切換?
在上下文切換過程中,CPU會停止處理當前運行的程序,並保存當前程序運行的具體位置以便之后繼續運行。從這個角度來看,上下文切換有點像我們同時閱讀幾本書,在來回切換書本的同時我們需要記住每本書當前讀到的頁碼。
在程序中,上下文切換過程中的“頁碼”信息是保存在進程控制塊(PCB)中的。PCB還經常被稱作“切換楨”(switchframe)。“頁碼”信息會一直保存到CPU的內存中,直到他們被再次使用。
上下文切換是存儲和恢復CPU狀態的過程,它使得線程執行能夠從中斷點恢復執行。上下文切換是多任務操作系統和多線程環境的基本特征。
57、Java中用到的線程調度算法是什么?
計算機通常只有一個CPU,在任意時刻只能執行一條機器指令,每個線程只有獲得CPU的使用權才能執行指令.所謂多線程的並發運行,其實是指從宏觀上看,各個線程輪流獲得CPU的使用權,分別執行各自的任務。
在運行池中,會有多個處於就緒狀態的線程在等待CPU,JAVA虛擬機的一項任務就是負責線程的調度,線程調度是指按照特定機制為多個線程分配CPU的使用權.
有兩種調度模型:分時調度模型和搶占式調度模型。分時調度模型是指讓所有的線程輪流獲得cpu的使用權,並且平均分配每個線程占用的CPU的時間片這個也比較好理解。
java虛擬機采用搶占式調度模型,是指優先讓可運行池中優先級高的線程占用CPU,如果可運行池中的線程優先級相同,那么就隨機選擇一個線程,使其占用CPU。處於運行狀態的線程會一直運行,直至它不得不放棄CPU。
58、什么是線程組,為什么在Java中不推薦使用?
線程組和線程池是兩個不同的概念,他們的作用完全不同,前者是為了方便線程的管理,后者是為了管理線程的生命周期,復用線程,減少創建銷毀線程的開銷。
59、為什么使用Executor框架比使用應用創建和管理線程好?
為什么要使用Executor線程池框架 ?
1、每次執行任務創建線程 new Thread()比較消耗性能,創建一個線程是比較耗時、耗資源的。
2、調用 new Thread()創建的線程缺乏管理,被稱為野線程,而且可以無限制的創建,線程之間的相互競爭會導致過多占用系統資源而導致系統癱瘓,還有線程之間的頻繁交替也會消耗很多系統資源。
3、直接使用new Thread() 啟動的線程不利於擴展,比如定時執行、定期執行、定時定期執行、線程中斷等都不便實現。
使用Executor線程池框架的優點 :
1、能復用已存在並空閑的線程從而減少線程對象的創建從而減少了消亡線程的開銷。
2、可有效控制最大並發線程數,提高系統資源使用率,同時避免過多資源競爭。
3、框架中已經有定時、定期、單線程、並發數控制等功能。綜上所述使用線程池框架Executor能更好的管理線程、提供系統資源使用率。
60、java中有幾種方法可以實現一個線程?
-
繼承 Thread 類
-
實現 Runnable 接口
-
Callable接口和FutureTask類,需要實現的是 call() 方法
-
線程池創建線程。
61、如何停止一個正在運行的線程?
1. 使用共享變量的方式
在這種方式中,之所以引入共享變量,是因為該變量可以被多個執行相同任務的線程用來作為是否中斷的信號,通知中斷線程的執行。
2. 使用interrupt方法終止線程
如果一個線程由於等待某些事件的發生而被阻塞,又該怎樣停止該線程呢?這種情況經常會發生,比如當一個線程由於需要等候鍵盤輸入而被阻塞,或者調用Thread.join()方法,或者Thread.sleep()方法,在網絡中調用ServerSocket.accept()方法,或者調用了DatagramSocket.receive()方法時,都有可能導致線程阻塞,使線程處於處於不可運行狀態時,即使主程序中將該線程的共享變量設置為true,但該線程此時根本無法檢查循環標志,當然也就無法立即中斷。
這里我們給出的建議是,不要使用stop()方法,而是使用Thread提供的interrupt()方法,因為該方法雖然不會中斷一個正在運行的線程,但是它可以使一個被阻塞的線程拋出一個中斷異常,從而使線程提前結束阻塞狀態,退出堵塞代碼。
62、notify()和notifyAll()有什么區別?
當一個線程進入wait之后,就必須等其他線程notify/notifyall,使用notifyall,可以喚醒所有處於wait狀態的線程,使其重新進入鎖的爭奪隊列中,而notify只能喚醒一個。
如果沒把握,建議notifyAll,防止notigy因為信號丟失而造成程序異常。
63、什么是Daemon線程?它有什么意義?
所謂后台(daemon)線程,是指在程序運行的時候在后台提供一種通用服務的線程,並且這個線程並不屬於程序中不可或缺的部分。
因此,當所有的非后台線程結束時,程序也就終止了,同時會殺死進程中的所有后台線程。反過來說, 只要有任何非后台線程還在運行,程序就不會終止。
必須在線程啟動之前調用setDaemon()方法,才能把它設置為后台線程。注意:后台進程在不執行finally子句的情況下就會終止其run()方法。
比如:JVM的垃圾回收線程就是Daemon線程,Finalizer也是守護線程。
64、java如何實現多線程之間的通訊和協作?
中斷 和 共享變量
65、什么是可重入鎖(ReentrantLock)?
舉例來說明鎖的可重入性
public class UnReentrant{ Lock lock = new Lock(); public void outer(){ lock.lock(); inner(); lock.unlock(); } public void inner(){ lock.lock(); //do something lock.unlock(); } }
outer中調用了inner,outer先鎖住了lock,這樣inner就不能再獲取lock。其實調用outer的線程已經獲取了lock鎖,但是不能在inner中重復利用已經獲取的鎖資源,這種鎖即稱之為 不可重入可重入就意味着:線程可以進入任何一個它已經擁有的鎖所同步着的代碼塊。
synchronized、ReentrantLock都是可重入的鎖,可重入鎖相對來說簡化了並發編程的開發。
66、當一個線程進入某個對象的一個synchronized的實例方法后,其它線程是否可進入此對象的其它方法?
如果其他方法沒有synchronized的話,其他線程是可以進入的。
所以要開放一個線程安全的對象時,得保證每個方法都是線程安全的。
67、樂觀鎖和悲觀鎖的理解及如何實現,有哪些實現方式?
悲觀鎖:總是假設最壞的情況,每次去拿數據的時候都認為別人會修改,所以每次在拿數據的時候都會上鎖,這樣別人想拿這個數據就會阻塞直到它拿到鎖。
傳統的關系型數據庫里邊就用到了很多這種鎖機制,比如行鎖,表鎖等,讀鎖,寫鎖等,都是在做操作之前先上鎖。再比如Java里面的同步原語synchronized關鍵字的實現也是悲觀鎖。
樂觀鎖:顧名思義,就是很樂觀,每次去拿數據的時候都認為別人不會修改,所以不會上鎖,但是在更新的時候會判斷一下在此期間別人有沒有去更新這個數據,可以使用版本號等機制。
樂觀鎖適用於多讀的應用類型,這樣可以提高吞吐量,像數據庫提供的類似於write_condition機制,其實都是提供的樂觀鎖。
在Java中java.util.concurrent.atomic包下面的原子變量類就是使用了樂觀鎖的一種實現方式CAS實現的。
樂觀鎖的實現方式:
1、使用版本標識來確定讀到的數據與提交時的數據是否一致。提交后修改版本標識,不一致時可以采取丟棄和再次嘗試的策略。
2、java中的Compare and Swap即CAS ,當多個線程嘗試使用CAS同時更新同一個變量時,只有其中一個線程能更新變量的值,而其它線程都失敗,失敗的線程並不會被掛起,而是被告知這次競爭中失敗,並可以再次嘗試。 CAS 操作中包含三個操作數 —— 需要讀寫的內存位置(V)、進行比較的預期原值(A)和擬寫入的新值(B)。如果內存位置V的值與預期原值A相匹配,那么處理器會自動將該位置值更新為新值B。否則處理器不做任何操作。
CAS缺點:
-
ABA問題:比如說一個線程one從內存位置V中取出A,這時候另一個線程two也從內存中取出A,並且two進行了一些操作變成了B,然后two又將V位置的數據變成A,這時候線程one進行CAS操作發現內存中仍然是A,然后one操作成功。盡管線程one的CAS操作成功,但可能存在潛藏的問題。從Java1.5開始JDK的atomic包里提供了一個類AtomicStampedReference來解決ABA問題。
-
循環時間長開銷大:對於資源競爭嚴重(線程沖突嚴重)的情況,CAS自旋的概率會比較大,從而浪費更多的CPU資源,效率低於synchronized。
-
只能保證一個共享變量的原子操作:當對一個共享變量執行操作時,我們可以使用循環CAS的方式來保證原子操作,但是對多個共享變量操作時,循環CAS就無法保證操作的原子性,這個時候就可以用鎖。
68、SynchronizedMap和ConcurrentHashMap有什么區別?
SynchronizedMap一次鎖住整張表來保證線程安全,所以每次只能有一個線程來訪為map。ConcurrentHashMap使用分段鎖來保證在多線程下的性能。
ConcurrentHashMap中則是一次鎖住一個桶。ConcurrentHashMap默認將hash表分為16個桶,諸如get,put,remove等常用操作只鎖當前需要用到的桶。這樣,原來只能一個線程進入,現在卻能同時有16個寫線程執行,並發性能的提升是顯而易見的。
另外ConcurrentHashMap使用了一種不同的迭代方式。在這種迭代方式中,當iterator被創建后集合再發生改變就不再是拋出
ConcurrentModificationException,取而代之的是在改變時new新的數據從而不影響原有的數據 ,iterator完成后再將頭指針替換為新的數據 ,這樣iterator線程可以使用原來老的數據,而寫線程也可以並發的完成改變。
69、CopyOnWriteArrayList可以用於什么應用場景?
CopyOnWriteArrayList(免鎖容器)的好處之一是當多個迭代器同時遍歷和修改這個列表時,不會拋出ConcurrentModificationException。在CopyOnWriteArrayList中,寫入將導致創建整個底層數組的副本,而源數組將保留在原地,使得復制的數組在被修改時,讀取操作可以安全地執行。
1、由於寫操作的時候,需要拷貝數組,會消耗內存,如果原數組的內容比較多的情況下,可能導致young gc或者full gc;
2、不能用於實時讀的場景,像拷貝數組、新增元素都需要時間,所以調用一個set操作后,讀取到數據可能還是舊的,雖然CopyOnWriteArrayList 能做到最終一致性,但是還是沒法滿足實時性要求;
CopyOnWriteArrayList透露的思想
1、讀寫分離,讀和寫分開
2、最終一致性
3、使用另外開辟空間的思路,來解決並發沖突
70、什么叫線程安全?servlet是線程安全嗎?
線程安全是編程中的術語,指某個函數、函數庫在多線程環境中被調用時,能夠正確地處理多個線程之間的共享變量,使程序功能正確完成。
Servlet不是線程安全的,servlet是單實例多線程的,當多個線程同時訪問同一個方法,是不能保證共享變量的線程安全性的。
Struts2的action是多實例多線程的,是線程安全的,每個請求過來都會new一個新的action分配給這個請求,請求完成后銷毀。
SpringMVC的Controller是線程安全的嗎?不是的,和Servlet類似的處理流程。
Struts2好處是不用考慮線程安全問題;Servlet和SpringMVC需要考慮線程安全問題,但是性能可以提升不用處理太多的gc,可以使用ThreadLocal來處理多線程的問題。
71、volatile有什么用?能否用一句話說明下volatile的應用場景?
volatile保證內存可見性和禁止指令重排。
volatile用於多線程環境下的單次操作(單次讀或者單次寫)。
72、為什么代碼會重排序?
在執行程序時,為了提供性能,處理器和編譯器常常會對指令進行重排序,但是不能隨意重排序,不是你想怎么排序就怎么排序,它需要滿足以下兩個條件:
在單線程環境下不能改變程序運行的結果;存在數據依賴關系的不允許重排序需要注意的是:重排序不會影響單線程環境的執行結果,但是會破壞多線程的執行語義。
73、在java中wait和sleep方法的不同?
最大的不同是在等待時wait會釋放鎖,而sleep一直持有鎖。Wait通常被用於線程間交互,sleep通常被用於暫停執行。
直接了解的深入一點吧, 在Java中線程的狀態一共被分成6種:
(1)初始態:NEW
創建一個Thread對象,但還未調用start()啟動線程時,線程處於初始態。
(2)運行態:RUNNABLE
在Java中,運行態包括就緒態 和 運行態。就緒態 該狀態下的線程已經獲得執行所需的所有資源,只要CPU分配執行權就能運行。所有就緒態的線程存放在就緒隊列中。
運行態 獲得CPU執行權,正在執行的線程。由於一個CPU同一時刻只能執行一條線程,因此每個CPU每個時刻只有一條運行態的線程。
(3)阻塞態
當一條正在執行的線程請求某一資源失敗時,就會進入阻塞態。而在Java中,阻塞態專指請求鎖失敗時進入的狀態。由一個阻塞隊列存放所有阻塞態的線程。處於阻塞態的線程會不斷請求資源,一旦請求成功,就會進入就緒隊列,等待執行。PS:鎖、IO、Socket等都資源。
(4)等待態
當前線程中調用wait、join、park函數時,當前線程就會進入等待態。也有一個等待隊列存放所有等待態的線程。線程處於等待態表示它需要等待其他線程的指示才能繼續運行。進入等待態的線程會釋放CPU執行權,並釋放資源(如:鎖)
(5)超時等待態
當運行中的線程調用sleep(time)、wait、join、parkNanos、parkUntil時,就會進入該狀態;它和等待態一樣,並不是因為請求不到資源,而是主動進入,並且進入后需要其他線程喚醒;進入該狀態后釋放CPU執行權 和 占有的資源。與等待態的區別:到了超時時間后自動進入阻塞隊列,開始競爭鎖。
(6)終止態
線程執行結束后的狀態。
注意:
-
wait()方法會釋放CPU執行權 和 占有的鎖。
-
sleep(long)方法僅釋放CPU使用權,鎖仍然占用;線程被放入超時等待隊列,與yield相比,它會使線程較長時間得不到運行。
-
yield()方法僅釋放CPU執行權,鎖仍然占用,線程會被放入就緒隊列,會在短時間內再次執行。
-
wait和notify必須配套使用,即必須使用同一把鎖調用;
-
wait和notify必須放在一個同步塊中調用wait和notify的對象必須是他們所處同步塊的鎖對象。
74、為什么wait和notify方法要在同步塊中調用?
Java API強制要求這樣做,如果你不這么做,你的代碼會拋出IllegalMonitorStateException異常。還有一個原因是為了避免wait和notify之間產生競態條件。
75、為什么你應該在循環中檢查等待條件?
處於等待狀態的線程可能會收到錯誤警報和偽喚醒,如果不在循環中檢查等待條件,程序就會在沒有滿足結束條件的情況下退出。
76、Java中的同步集合與並發集合有什么區別?
同步集合與並發集合都為多線程和並發提供了合適的線程安全的集合,不過並發集合的可擴展性更高。在Java1.5之前程序員們只有同步集合來用且在多線程並發的時候會導致爭用,阻礙了系統的擴展性。Java5介紹了並發集合像ConcurrentHashMap,不僅提供線程安全還用鎖分離和內部分區等現代技術提高了可擴展性。
77、什么是線程池?為什么要使用它?
創建線程要花費昂貴的資源和時間,如果任務來了才創建線程那么響應時間會變長,而且一個進程能創建的線程數有限。
為了避免這些問題,在程序啟動的時候就創建若干線程來響應處理,它們被稱為線程池,里面的線程叫工作線程。從JDK1.5開始,Java API提供了Executor框架讓你可以創建不同的線程池。
78、怎么檢測一個線程是否擁有鎖?
在java.lang.Thread中有一個方法叫holdsLock(),它返回true如果當且僅當當前線程擁有某個具體對象的鎖。
79、你如何在Java中獲取線程堆棧?
kill -3 [java pid]不會在當前終端輸出,它會輸出到代碼執行的或指定的地方去。比如,kill -3 tomcat pid, 輸出堆棧到log目錄下。Jstack [java pid]這個比較簡單,在當前終端顯示,也可以重定向到指定文件中。-JvisualVM:Thread Dump不做說明,打開JvisualVM后,都是界面操作,過程還是很簡單的。
80、JVM中哪個參數是用來控制線程的棧堆棧小的?
-Xss 每個線程的棧大小
81、Thread類中的yield方法有什么作用?
使當前線程從執行狀態(運行狀態)變為可執行態(就緒狀態)。
當前線程到了就緒狀態,那么接下來哪個線程會從就緒狀態變成執行狀態呢?可能是當前線程,也可能是其他線程,看系統的分配了。
82、Java中ConcurrentHashMap的並發度是什么?
ConcurrentHashMap把實際map划分成若干部分來實現它的可擴展性和線程安全。這種划分是使用並發度獲得的,它是ConcurrentHashMap類構造函數的一個可選參數,默認值為16,這樣在多線程情況下就能避免爭用。
在JDK8后,它摒棄了Segment(鎖段)的概念,而是啟用了一種全新的方式實現,利用CAS算法。同時加入了更多的輔助變量來提高並發度,具體內容還是查看源碼吧。
83、Java中Semaphore是什么?
Java中的Semaphore是一種新的同步類,它是一個計數信號。從概念上講,從概念上講,信號量維護了一個許可集合。如有必要,在許可可用前會阻塞每一個 acquire(),然后再獲取該許可。
每個 release()添加一個許可,從而可能釋放一個正在阻塞的獲取者。但是,不使用實際的許可對象,Semaphore只對可用許可的號碼進行計數,並采取相應的行動。信號量常常用於多線程的代碼中,比如數據庫連接池。
84、Java線程池中submit() 和 execute()方法有什么區別?
兩個方法都可以向線程池提交任務,execute()方法的返回類型是void,它定義在Executor接口中。
而submit()方法可以返回持有計算結果的Future對象,它定義在ExecutorService接口中,它擴展了Executor接口,其它線程池類像ThreadPoolExecutor和ScheduledThreadPoolExecutor都有這些方法。
85、什么是阻塞式方法?
阻塞式方法是指程序會一直等待該方法完成期間不做其他事情,ServerSocket的accept()方法就是一直等待客戶端連接。這里的阻塞是指調用結果返回之前,當前線程會被掛起,直到得到結果之后才會返回。此外,還有異步和非阻塞式方法在任務完成前就返回。
86、Java中的ReadWriteLock是什么?
讀寫鎖是用來提升並發程序性能的鎖分離技術的成果。
87、volatile 變量和 atomic 變量有什么不同?
Volatile變量可以確保先行關系,即寫操作會發生在后續的讀操作之前, 但它並不能保證原子性。例如用volatile修飾count變量那么 count++ 操作就不是原子性的。
而AtomicInteger類提供的atomic方法可以讓這種操作具有原子性如getAndIncrement()方法會原子性的進行增量操作把當前值加一,其它數據類型和引用變量也可以進行相似操作。
88、可以直接調用Thread類的run ()方法么?
當然可以。但是如果我們調用了Thread的run()方法,它的行為就會和普通的方法一樣,會在當前線程中執行。為了在新的線程中執行我們的代碼,必須使用Thread.start()方法。
89、如何讓正在運行的線程暫停一段時間?
我們可以使用Thread類的Sleep()方法讓線程暫停一段時間。需要注意的是,這並不會讓線程終止,一旦從休眠中喚醒線程,線程的狀態將會被改變為Runnable,並且根據線程調度,它將得到執行。
90、你對線程優先級的理解是什么?
每一個線程都是有優先級的,一般來說,高優先級的線程在運行時會具有優先權,但這依賴於線程調度的實現,這個實現是和操作系統相關的(OS dependent)。
我們可以定義線程的優先級,但是這並不能保證高優先級的線程會在低優先級的線程前執行。線程優先級是一個int變量(從1-10),1代表最低優先級,10代表最高優先級。
java的線程優先級調度會委托給操作系統去處理,所以與具體的操作系統優先級有關,如非特別需要,一般無需設置線程優先級。
91、什么是線程調度器(Thread Scheduler)和時間分片(Time Slicing )?
線程調度器是一個操作系統服務,它負責為Runnable狀態的線程分配CPU時間。一旦我們創建一個線程並啟動它,它的執行便依賴於線程調度器的實現。同上一個問題,線程調度並不受到Java虛擬機控制,所以由應用程序來控制它是更好的選擇(也就是說不要讓你的程序依賴於線程的優先級)。
時間分片是指將可用的CPU時間分配給可用的Runnable線程的過程。分配CPU時間可以基於線程優先級或者線程等待的時間。
92、你如何確保main()方法所在的線程是Java 程序最后結束的線程?
我們可以使用Thread類的join()方法來確保所有程序創建的線程在main()方法退出前結束。
93、線程之間是如何通信的?
當線程間是可以共享資源時,線程間通信是協調它們的重要的手段。Object類中wait()\notify()\notifyAll()方法可以用於線程間通信關於資源的鎖的狀態。
94、為什么線程通信的方法wait(), notify()和notifyAll()被定義在Object 類里?
Java的每個對象中都有一個鎖(monitor,也可以成為監視器) 並且wait(),notify()等方法用於等待對象的鎖或者通知其他線程對象的監視器可用。
在Java的線程中並沒有可供任何對象使用的鎖和同步器。這就是為什么這些方法是Object類的一部分,這樣Java的每一個類都有用於線程間通信的基本方法。
95、為什么wait(), notify()和notifyAll ()必須在同步方法或者同步塊中被調用?
當一個線程需要調用對象的wait()方法的時候,這個線程必須擁有該對象的鎖,接着它就會釋放這個對象鎖並進入等待狀態直到其他線程調用這個對象上的notify()方法。
同樣的,當一個線程需要調用對象的notify()方法時,它會釋放這個對象的鎖,以便其他在等待的線程就可以得到這個對象鎖。由於所有的這些方法都需要線程持有對象的鎖,這樣就只能通過同步來實現,所以他們只能在同步方法或者同步塊中被調用。
96、為什么Thread類的sleep()和yield ()方法是靜態的?
Thread類的sleep()和yield()方法將在當前正在執行的線程上運行。所以在其他處於等待狀態的線程上調用這些方法是沒有意義的。這就是為什么這些方法是靜態的。它們可以在當前正在執行的線程中工作,並避免程序員錯誤的認為可以在其他非運行線程調用這些方法。
97、如何確保線程安全?
在Java中可以有很多方法來保證線程安全——同步,使用原子類(atomic concurrent classes),實現並發鎖,使用volatile關鍵字,使用不變類和線程安全類。
98、同步方法和同步塊,哪個是更好的選擇?
同步塊是更好的選擇,因為它不會鎖住整個對象(當然你也可以讓它鎖住整個對象)。同步方法會鎖住整個對象,哪怕這個類中有多個不相關聯的同步塊,這通常會導致他們停止執行並需要等待獲得這個對象上的鎖。
同步塊更要符合開放調用的原則,只在需要鎖住的代碼塊鎖住相應的對象,這樣從側面來說也可以避免死鎖。
99、如何創建守護線程?
使用Thread類的setDaemon(true)方法可以將線程設置為守護線程,需要注意的是,需要在調用start()方法前調用這個方法,否則會拋出IllegalThreadStateException異常。
100、什么是Java Timer 類?如何創建一個有特定時間間隔的任務?
java.util.Timer是一個工具類,可以用於安排一個線程在未來的某個特定時間執行。Timer類可以用安排一次性任務或者周期任務。
java.util.TimerTask是一個實現了Runnable接口的抽象類,我們需要去繼承這個類來創建我們自己的定時任務並使用Timer去安排它的執行。目前有開源的Qurtz可以用來創建定時任務。