一.什么是負載均衡
負載均衡(Load-balance LB),指的是將用戶的請求平攤分配到各個服務器上,從而達到系統的高可用。常見的負載均衡軟件有Nginx、lvs等。
二.負載均衡的簡單分類
1)集中式LB:集中式負載均衡指的是,在服務消費者(client)和服務提供者(provider)之間提供負載均衡設施,通過該設施把消費者(client)的請求通過某種策略轉發給服務提供者(provider),常見的集中式負載均衡是Nginx;
2)進程式LB:將負載均衡的邏輯集成到消費者(client)身上,即消費者從服務注冊中心獲取服務列表,獲知有哪些地址可用,再從這些地址里選出合適的服務器,springCloud的Ribbon就是一個進程式的負載均衡工具。
三.為什么需要做負載均衡
1) 不做負載均衡,可能導致某台機子負荷太重而掛掉;
2)導致資源浪費,比如某些機子收到太多的請求,肯定會導致某些機子收到很少請求甚至收不到請求,這樣會浪費系統資源。
四.springCloud如何開啟負載均衡
1)在消費者子工程的pom.xml文件的加入相關依賴(https://mvnrepository.com/artifact/org.springframework.cloud/spring-cloud-starter-ribbon/1.4.7.RELEASE);
<!-- https://mvnrepository.com/artifact/org.springframework.cloud/spring-cloud-starter-ribbon --> <dependency> <groupId>org.springframework.cloud</groupId> <artifactId>spring-cloud-starter-ribbon</artifactId> <version>1.4.7.RELEASE</version> </dependency>
消費者需要獲取服務注冊中心的注冊列表信息,把Eureka的依賴包也放進pom.xml
<dependency> <groupId>org.springframework.cloud</groupId> <artifactId>spring-cloud-starter-eureka-server</artifactId> <version>1.4.7.RELEASE</version> </dependency>
2)在application.yml里配置服務注冊中心的信息
在該消費者(client)的application.yml里配置Eureka的信息,至於如何啟動一個springCloud項目,請看這篇博客https://www.cnblogs.com/fengrongriup/p/14464208.html
#配置Eureka
eureka:
client:
#是否注冊自己到服務注冊中心,消費者不用提供服務
register-with-eureka: false
service-url:
#訪問的url
defaultZone: http://localhost:8002/eureka/
3)在消費者啟動類上面加上注解@EnableEurekaClient
@EnableEurekaClient
4)在配置文件的Bean上加上
@Bean @LoadBalanced public RestTemplate getRestTemplate(){ return new RestTemplate(); }
五.IRule
什么是IRule
IRule接口代表負載均衡的策略,它的不同的實現類代表不同的策略,它的四種實現類和它的關系如下()
說明一下(idea找Irule的方法:ctrl+n 填入IRule進行查找)
1.RandomRule:表示隨機策略,它將從服務清單中隨機選擇一個服務;
public class RandomRule extends AbstractLoadBalancerRule { public RandomRule() { } @SuppressWarnings({"RCN_REDUNDANT_NULLCHECK_OF_NULL_VALUE"}) //傳入一個負載均衡器 public Server choose(ILoadBalancer lb, Object key) { if (lb == null) { return null; } else { Server server = null; while(server == null) { if (Thread.interrupted()) { return null; } //通過負載均衡器獲取對應的服務列表 List<Server> upList = lb.getReachableServers(); //通過負載均衡器獲取全部服務列表 List<Server> allList = lb.getAllServers(); int serverCount = allList.size(); if (serverCount == 0) { return null; } //獲取一個隨機數 int index = this.chooseRandomInt(serverCount); //通過這個隨機數從列表里獲取服務 server = (Server)upList.get(index); if (server == null) { //當前線程轉為就緒狀態,讓出cpu Thread.yield(); } else { if (server.isAlive()) { return server; } server = null; Thread.yield(); } } return server; } }
小結:通過獲取到的所有服務的數量,以這個數量為標准獲取一個(0,服務數量)的數作為獲取服務實例的下標,從而獲取到服務實例
2.ClientConfigEnabledRoundRobinRule:ClientConfigEnabledRoundRobinRule並沒有實現什么特殊的處理邏輯,但是他的子類可以實現一些高級策略, 當一些本身的策略無法實現某些需求的時候,它也可以做為父類幫助實現某些策略,一般情況下我們都不會使用它;
public class ClientConfigEnabledRoundRobinRule extends AbstractLoadBalancerRule { //使用“4”中的RoundRobinRule策略 RoundRobinRule roundRobinRule = new RoundRobinRule(); public ClientConfigEnabledRoundRobinRule() { } public void initWithNiwsConfig(IClientConfig clientConfig) { this.roundRobinRule = new RoundRobinRule(); } public void setLoadBalancer(ILoadBalancer lb) { super.setLoadBalancer(lb); this.roundRobinRule.setLoadBalancer(lb); } public Server choose(Object key) { if (this.roundRobinRule != null) { return this.roundRobinRule.choose(key); } else { throw new IllegalArgumentException("This class has not been initialized with the RoundRobinRule class"); } } }
小結:用來作為父類,子類通過實現它來實現一些高級負載均衡策略
1)ClientConfigEnabledRoundRobinRule的子類BestAvailableRule:從該策略的名字就可以知道,bestAvailable的意思是最好獲取的,該策略的作用是獲取到最空閑的服務實例;
public class BestAvailableRule extends ClientConfigEnabledRoundRobinRule { //注入負載均衡器,它可以選擇服務實例 private LoadBalancerStats loadBalancerStats; public BestAvailableRule() { } public Server choose(Object key) { //假如負載均衡器實例為空,采用它父類的負載均衡機制,也就是輪詢機制,因為它的父類采用的就是輪詢機制 if (this.loadBalancerStats == null) { return super.choose(key); } else { //獲取所有服務實例並放入列表里 List<Server> serverList = this.getLoadBalancer().getAllServers(); //並發量 int minimalConcurrentConnections = 2147483647; long currentTime = System.currentTimeMillis(); Server chosen = null; Iterator var7 = serverList.iterator(); //遍歷服務列表 while(var7.hasNext()) { Server server = (Server)var7.next(); ServerStats serverStats = this.loadBalancerStats.getSingleServerStat(server); //淘汰掉已經負載的服務實例 if (!serverStats.isCircuitBreakerTripped(currentTime)) { //獲得當前服務的請求量(並發量) int concurrentConnections = serverStats.getActiveRequestsCount(currentTime); //找出並發了最小的服務 if (concurrentConnections < minimalConcurrentConnections) { minimalConcurrentConnections = concurrentConnections; chosen = server; } } } if (chosen == null) { return super.choose(key); } else { return chosen; } } } public void setLoadBalancer(ILoadBalancer lb) { super.setLoadBalancer(lb); if (lb instanceof AbstractLoadBalancer) { this.loadBalancerStats = ((AbstractLoadBalancer)lb).getLoadBalancerStats(); } } }
小結:ClientConfigEnabledRoundRobinRule子類之一,獲取到並發了最少的服務
2)ClientConfigEnabledRoundRobinRule的另一個子類是PredicateBasedRule:通過源碼可以看出它是一個抽象類,它的抽象方法getPredicate()返回一個AbstractServerPredicate的實例,然后它的choose方法調用AbstractServerPredicate類的chooseRoundRobinAfterFiltering方法獲取具體的Server實例並返回
public abstract class PredicateBasedRule extends ClientConfigEnabledRoundRobinRule { public PredicateBasedRule() { } //獲取AbstractServerPredicate對象 public abstract AbstractServerPredicate getPredicate(); public Server choose(Object key) { //獲取當前策略的負載均衡器 ILoadBalancer lb = this.getLoadBalancer(); //通過AbstractServerPredicate的子類過濾掉一部分實例(它實現了Predicate) //以輪詢的方式從過濾后的服務里選擇一個服務 Optional<Server> server = this.getPredicate().chooseRoundRobinAfterFiltering(lb.getAllServers(), key); return server.isPresent() ? (Server)server.get() : null; } }
再看看它的chooseRoundRobinAfterFiltering()方法是如何實現的
public Optional<Server> chooseRoundRobinAfterFiltering(List<Server> servers, Object loadBalancerKey) { List<Server> eligible = this.getEligibleServers(servers, loadBalancerKey); return eligible.size() == 0 ? Optional.absent() : Optional.of(eligible.get(this.incrementAndGetModulo(eligible.size()))); }
是這樣的,先通過this.getEligibleServers(servers, loadBalancerKey)方法獲取一部分實例,然后判斷這部分實例是否為空,如果不為空則調用eligible.get(this.incrementAndGetModulo(eligible.size())方法從這部分實例里獲取一個服務,點進this.getEligibleServers看
public List<Server> getEligibleServers(List<Server> servers, Object loadBalancerKey) { if (loadBalancerKey == null) { return ImmutableList.copyOf(Iterables.filter(servers, this.getServerOnlyPredicate())); } else { List<Server> results = Lists.newArrayList(); Iterator var4 = servers.iterator(); while(var4.hasNext()) { Server server = (Server)var4.next(); //條件滿足 if (this.apply(new PredicateKey(loadBalancerKey, server))) { //添加到集合里 results.add(server); } } return results; } }
getEligibleServers方法是根據this.apply(new PredicateKey(loadBalancerKey, server))進行過濾的,如果滿足,就添加到返回的集合中。符合什么條件才可以進行過濾呢?可以發現,apply是用this調用的,this指的是AbstractServerPredicate(它的類對象),但是,該類是個抽象類,該實例是不存在的,需要子類去實現,它的子類在這里暫時不是看了,以后有空再深入學習下,它的子類如下,實現哪個子類,就用什么 方式過濾。
再回到chooseRoundRobinAfterFiltering()方法,剛剛說完它通過 getEligibleServers方法過濾並獲取到一部分實例,然后再通過this.incrementAndGetModulo(eligible.size())方法從這部分實例里選擇一個實例返回,該方法的意思是直接返回下一個整數(索引值),通過該索引值從返回的實例列表中取得Server實例。
private int incrementAndGetModulo(int modulo) { //當前下標 int current; //下一個下標 int next; do { //獲得當前下標值 current = this.nextIndex.get(); next = (current + 1) % modulo; } while(!this.nextIndex.compareAndSet(current, next) || current >= modulo); return current; }
源碼擼明白了,再來理一下chooseRoundRobinAfterFiltering()的思路:先通過getEligibleServers()方法獲得一部分服務實例,再從這部分服務實例里拿到當前服務實例的下一個服務對象使用。
小結:通過AbstractServerPredicate的chooseRoundRobinAfterFiltering方法進行過濾,獲取備選的服務實例清單,然后用線性輪詢選擇一個實例,是一個抽象類,過濾策略在AbstractServerPredicate的子類中具體實現
3.RetryRule:是對選定的負載均衡策略加上重試機制,即在一個配置好的時間段內(默認500ms),當選擇實例不成功,則一直嘗試使用subRule的方式選擇一個可用的實例,在調用時間到達閥值的時候還沒找到可用服務,則返回空,如果沒有配置負載策略,默認輪詢(即“4”中的輪詢);
先貼上它的源碼
public class RetryRule extends AbstractLoadBalancerRule { //從這可以看出,默認使用輪詢機制 IRule subRule = new RoundRobinRule(); //閥值 long maxRetryMillis = 500L; //無參構造函數 public RetryRule() { } //使用輪詢機制 public RetryRule(IRule subRule) { this.subRule = (IRule)(subRule != null ? subRule : new RoundRobinRule()); } public RetryRule(IRule subRule, long maxRetryMillis) { this.subRule = (IRule)(subRule != null ? subRule : new RoundRobinRule()); this.maxRetryMillis = maxRetryMillis > 0L ? maxRetryMillis : 500L; } public void setRule(IRule subRule) { this.subRule = (IRule)(subRule != null ? subRule : new RoundRobinRule()); } public IRule getRule() { return this.subRule; } //設置最大耗時時間(閥值),最多重試多久 public void setMaxRetryMillis(long maxRetryMillis) { if (maxRetryMillis > 0L) { this.maxRetryMillis = maxRetryMillis; } else { this.maxRetryMillis = 500L; } } //獲取重試的時間 public long getMaxRetryMillis() { return this.maxRetryMillis; } //設置負載均衡器,用以獲取服務 public void setLoadBalancer(ILoadBalancer lb) { super.setLoadBalancer(lb); this.subRule.setLoadBalancer(lb); } //通過負載均衡器選擇服務 public Server choose(ILoadBalancer lb, Object key) { long requestTime = System.currentTimeMillis(); //當前時間+閥值 = 截止時間 long deadline = requestTime + this.maxRetryMillis; Server answer = null; answer = this.subRule.choose(key); //獲取到服務直接返回 if ((answer == null || !answer.isAlive()) && System.currentTimeMillis() < deadline) { InterruptTask task = new InterruptTask(deadline - System.currentTimeMillis()); //獲取不到服務的情況下反復獲取 while(!Thread.interrupted()) { answer = this.subRule.choose(key); if (answer != null && answer.isAlive() || System.currentTimeMillis() >= deadline) { break; } Thread.yield(); } task.cancel(); } return answer != null && answer.isAlive() ? answer : null; } public Server choose(Object key) { return this.choose(this.getLoadBalancer(), key); } public void initWithNiwsConfig(IClientConfig clientConfig) { } }
小結:采用RoundRobinRule的選擇機制,進行反復嘗試,當花費時間超過設置的閾值maxRetryMills時,就返回null
4.RoundRobinRule:輪詢策略,它會從服務清單中按照輪詢的方式依次選擇每個服務實例,它的工作原理是:直接獲取下一個可用實例,如果超過十次沒有獲取到可用的服務實例,則返回空且報出異常信息;
public class RoundRobinRule extends AbstractLoadBalancerRule { private AtomicInteger nextServerCyclicCounter; private static final boolean AVAILABLE_ONLY_SERVERS = true; private static final boolean ALL_SERVERS = false; private static Logger log = LoggerFactory.getLogger(RoundRobinRule.class); public RoundRobinRule() { this.nextServerCyclicCounter = new AtomicInteger(0); } public RoundRobinRule(ILoadBalancer lb) { this(); this.setLoadBalancer(lb); } public Server choose(ILoadBalancer lb, Object key) { if (lb == null) { log.warn("no load balancer"); return null; } else { Server server = null; int count = 0; while(true) { //選擇十次,十次都沒選到可用服務就返回空 if (server == null && count++ < 10) { List<Server> reachableServers = lb.getReachableServers(); List<Server> allServers = lb.getAllServers(); int upCount = reachableServers.size(); int serverCount = allServers.size(); if (upCount != 0 && serverCount != 0) { int nextServerIndex = this.incrementAndGetModulo(serverCount); server = (Server)allServers.get(nextServerIndex); if (server == null) { Thread.yield(); } else { if (server.isAlive() && server.isReadyToServe()) { return server; } server = null; } continue; } log.warn("No up servers available from load balancer: " + lb); return null; } if (count >= 10) { log.warn("No available alive servers after 10 tries from load balancer: " + lb); } return server; } } } //遞增的形式實現輪詢 private int incrementAndGetModulo(int modulo) { int current; int next; do { current = this.nextServerCyclicCounter.get(); next = (current + 1) % modulo; } while(!this.nextServerCyclicCounter.compareAndSet(current, next)); return next; } public Server choose(Object key) { return this.choose(this.getLoadBalancer(), key); } public void initWithNiwsConfig(IClientConfig clientConfig) { } }
小結:采用線性輪詢機制循環依次選擇每個服務實例,直到選擇到一個不為空的服務實例或循環次數達到10次
它有個子類WeightedResponseTimeRule,WeightedResponseTimeRule是對RoundRobinRule的優化。WeightedResponseTimeRule在其父類的基礎上,增加了定時任務這個功能,通過啟動一個定時任務來計算每個服務的權重,然后遍歷服務列表選擇服務實例,從而達到更加優秀的分配效果。我們這里把這個類分為三部分:定時任務,計算權值,選擇服務
1)定時任務
//定時任務 void initialize(ILoadBalancer lb) { if (this.serverWeightTimer != null) { this.serverWeightTimer.cancel(); } this.serverWeightTimer = new Timer("NFLoadBalancer-serverWeightTimer-" + this.name, true); //開啟一個任務,每30秒執行一次 this.serverWeightTimer.schedule(new WeightedResponseTimeRule.DynamicServerWeightTask(), 0L, (long)this.serverWeightTaskTimerInterval); WeightedResponseTimeRule.ServerWeight sw = new WeightedResponseTimeRule.ServerWeight(); sw.maintainWeights(); Runtime.getRuntime().addShutdownHook(new Thread(new Runnable() { public void run() { WeightedResponseTimeRule.logger.info("Stopping NFLoadBalancer-serverWeightTimer-" + WeightedResponseTimeRule.this.name); WeightedResponseTimeRule.this.serverWeightTimer.cancel(); } })); }
DynamicServerWeightTask()任務如下:
class DynamicServerWeightTask extends TimerTask { DynamicServerWeightTask() { } public void run() { WeightedResponseTimeRule.ServerWeight serverWeight = WeightedResponseTimeRule.this.new ServerWeight(); try { //計算權重 serverWeight.maintainWeights(); } catch (Exception var3) { WeightedResponseTimeRule.logger.error("Error running DynamicServerWeightTask for {}", WeightedResponseTimeRule.this.name, var3); } } }
小結:調用initialize方法開啟定時任務,再在任務里計算服務的權重
2)計算權重:第一步,先算出所有實例的響應時間;第二步,再根據所有實例響應時間,算出每個實例的權重
//用來存儲權重 private volatile List<Double> accumulatedWeights = new ArrayList(); //內部類 class ServerWeight { ServerWeight() { } //該方法用於計算權重 public void maintainWeights() { //獲取負載均衡器 ILoadBalancer lb = WeightedResponseTimeRule.this.getLoadBalancer(); if (lb != null) { if (WeightedResponseTimeRule.this.serverWeightAssignmentInProgress.compareAndSet(false, true)) { try { WeightedResponseTimeRule.logger.info("Weight adjusting job started"); AbstractLoadBalancer nlb = (AbstractLoadBalancer)lb; //獲得每個服務實例的信息 LoadBalancerStats stats = nlb.getLoadBalancerStats(); if (stats != null) { //實例的響應時間 double totalResponseTime = 0.0D; ServerStats ss; //累加所有實例的響應時間 for(Iterator var6 = nlb.getAllServers().iterator(); var6.hasNext(); totalResponseTime += ss.getResponseTimeAvg()) { Server server = (Server)var6.next(); ss = stats.getSingleServerStat(server); } Double weightSoFar = 0.0D; List<Double> finalWeights = new ArrayList(); Iterator var20 = nlb.getAllServers().iterator(); //計算負載均衡器所有服務的權重,公式是weightSoFar = weightSoFar + weight-實例平均響應時間 while(var20.hasNext()) { Server serverx = (Server)var20.next(); ServerStats ssx = stats.getSingleServerStat(serverx); double weight = totalResponseTime - ssx.getResponseTimeAvg(); weightSoFar = weightSoFar + weight; finalWeights.add(weightSoFar); } WeightedResponseTimeRule.this.setWeights(finalWeights); return; } } catch (Exception var16) { WeightedResponseTimeRule.logger.error("Error calculating server weights", var16); return; } finally { WeightedResponseTimeRule.this.serverWeightAssignmentInProgress.set(false); } } } } }
3)選擇服務
@SuppressWarnings({"RCN_REDUNDANT_NULLCHECK_OF_NULL_VALUE"}) public Server choose(ILoadBalancer lb, Object key) { if (lb == null) { return null; } else { Server server = null; while(server == null) { List<Double> currentWeights = this.accumulatedWeights; if (Thread.interrupted()) { return null; } List<Server> allList = lb.getAllServers(); int serverCount = allList.size(); if (serverCount == 0) { return null; } int serverIndex = 0; double maxTotalWeight = currentWeights.size() == 0 ? 0.0D : (Double)currentWeights.get(currentWeights.size() - 1); if (maxTotalWeight >= 0.001D && serverCount == currentWeights.size()) { //生產0到最大權重值的隨機數 double randomWeight = this.random.nextDouble() * maxTotalWeight; int n = 0; //循環權重區間 for(Iterator var13 = currentWeights.iterator(); var13.hasNext(); ++n) { //獲取到循環的數 Double d = (Double)var13.next(); //假如隨機數在這個區間內,就拿該索引d服務列表獲取對應的實例 if (d >= randomWeight) { serverIndex = n; break; } } server = (Server)allList.get(serverIndex); } else { server = super.choose(this.getLoadBalancer(), key); if (server == null) { return server; } } if (server == null) { Thread.yield(); } else { if (server.isAlive()) { return server; } server = null; } } return server; } }
小結:首先生成了一個[0,最大權重值) 區間內的隨機數,然后遍歷權重列表,假如當前隨機數在這個區間內,就通過該下標獲得對應的服務。