Hadoop hdfs副本存儲和糾刪碼(Erasure Coding)存儲優缺點


The advantages and disadvantages of hadoop hdfs replicating storage and erasure coding storage.

Hadoop 3.0.0-alpha1 及以上版本提供了糾刪碼(Erasure Coding)存儲數據的支持,用戶可以根據不同的場景和需求選擇副本存儲或EC存儲方案,兩種存儲方案各有優缺點和適用場景。

1 副本存儲

以文件大小:2.5G 寫入HDFS為例;

$ ls –ltr
-rw-r--r-- 1 sywu sywu 2.5G Mar  4 14:15 data000

hdfs數據塊大小:512M,默認副本數:3;2.5G文件被切分為5個數據塊(B1,B2,B3,B4,B5)存儲,單節點存儲完成,數據塊復制到其它節點,最終總的數據塊數:15個,總消耗存儲空間:7.5G。

three_replicat_storage

1.1 優點

  1. 副本保證數據可用性;當某個節點數據塊丟失或破損,datanode發現后會自動從其它正常的節點中恢復數據塊;
  2. 副本提高了作業運行並行度,作業可以同時在副本節點運行。 ## 1.2 缺點
  3. 每個副本使用100%的存儲開銷,副本數越多,存儲開銷越大;
  4. 副本同步占用大量的網絡和IO資源。

2 糾刪碼(Erasure Coding)存儲

HDFS使用糾刪碼(Erasure Coding,以下簡稱EC)解決副本復制和副本存儲所帶來的空間和資源消耗問題,以EC代替副本,提供和副本存儲相同級別的容錯能力,並且存儲開銷不超過單副本存儲的50%。

2.1 糾刪碼(Erasure Coding)組成結構

three_replicat_storage

  1. EC由數據(Data)和奇偶校驗碼(Parity)兩部分組成,數據存儲時通過EC算法生成;生成的過程稱為編碼(encoding),恢復丟失數據塊的過程稱為解碼(decoding)。
  2. 與HDFS文件基本構成單位:塊(Block) 不同,EC的構成單位:塊組(Block group)、塊(Block)、單元(cell),每個塊組存放與其它塊組一樣數量的數據塊和奇偶校驗碼塊;單元(cell)是EC內部最小的存儲結構,多個單元組成條(Striping),存儲在塊(Block)里。
  3. EC寫入方案有:連續布局(Contiguous Layout)和條形布局(Striping Layout);連續布局從 Hadoop 3.0.0-alpha1 版本開始提供支持,數據依次寫入塊中的單元(cell),一個塊寫滿之后再寫入下一個塊;條形布局寫入方案目前還在開發階段,按官方介紹,這種方案由若干個相同大小的單元(cell)序列構成條(stripe),數據被依次寫入條的各個單元中,當一個條寫滿之后再寫入下一個條,一個條的不同單元位於不同的數據塊中
  4. 數據和奇偶校驗碼塊數量由EC策略(Erasure coding policies)決定,比如上圖的策略:RS-3-2-1024k,表示每個塊組由3個數據塊和2個校驗塊構成,每個單元(cell)大小為1024k,最大可丟失塊2個,丟失超過2個則無法恢復。

2.2 Erasure Coding算法

目前支持的EC算法有XOR和Reed-Solomon兩種;

2.2.1 XOR 算法

exclusive OR,基於異或運算的算法,從任意數量的單元(cell)中生成1個奇偶校驗塊。如果任何數據塊丟失,則通過對其余位和奇偶校驗位進行來恢復。

erasure_coding_xor

由於只有1個奇偶校驗塊,因此它只能容忍1個數據塊故障,對於像HDFS這樣需要處理多個故障的系統來說,不適用。

2.2.2 Reed-Solomon 算法

Reed-Solomon(簡稱:RS),該算法有兩個參數k和m,記為 RS(k,m),RS算法將k個數據單元(cell)與生成器矩陣(Generator Matrix)相乘得到具有k個數據單元和m個奇偶校驗碼的擴展碼字(extended codewords),最多可容忍m個數據塊丟失;如果數據塊丟失,則只要將 k+m 個單元格中的k個可用,通過將生成器矩陣的逆與擴展碼字(extended codewords)相乘來恢復數據塊。由於可以容忍多個數據塊丟失,更適用於生產環境。

2.3 使用EC RS算法存儲數據

Hadoop 3.0.0-alpha1 版本及以上版本默認已經啟用EC,首先設置目錄策略使用RS算法,以6個data塊和3個奇偶校驗碼構成一個block group;

hdfs ec -setPolicy -path /data/ec -policy RS-6-3-1024k

將2.5G數據寫入EC目錄下,數據最終存儲在一個block group下,共9個數據塊,總消耗存儲空間:2.5G。

erasure_coding_rs

檢查狀態;

/data/ec/split000 2684354560 bytes, erasure-coded: policy=RS-6-3-1024k, 1 block(s):  OK
0. BP-1016852637-192.168.1.192-1597819912196:blk_-9223372036854775792_4907534 len=2684354560 Live_repl=9  [blk_-9223372036854775792:DatanodeInfoWithStorage[192.168.1.192:1019,DS-3b10bc66-c5c9-47f8-b4ea-99441fc5df04,DISK], blk_-9223372036854775791:DatanodeInfoWithStorage[192.168.1.196:1019,DS-c618bb83-03f2-4007-a3a9-cbd11eb2a15a,DISK], blk_-9223372036854775790:DatanodeInfoWithStorage[192.168.1.193:1019,DS-6554db41-d285-4f31-9fde-2017cc211b0c,DISK], blk_-9223372036854775789:DatanodeInfoWithStorage[192.168.1.188:1019,DS-09a7d2b0-6018-43af-8a63-6be8ba9217e6,DISK], blk_-9223372036854775788:DatanodeInfoWithStorage[192.168.1.199:1019,DS-b24cf7ce-1235-478f-884d-19cde4a03c9e,DISK], blk_-9223372036854775787:DatanodeInfoWithStorage[192.168.1.187:1019,DS-43b686d2-e83c-49a3-b8e5-64c4e5edcb53,DISK], blk_-9223372036854775786:DatanodeInfoWithStorage[192.168.1.195:1019,DS-eb42e686-1ca9-44c3-9891-868c67d9d1fa,DISK], blk_-9223372036854775785:DatanodeInfoWithStorage[192.168.1.194:1019,DS-15635fea-314c-4703-a7ab-6f81db1e52cd,DISK], blk_-9223372036854775784:DatanodeInfoWithStorage[192.168.1.198:1019,DS-73bc78d2-e218-40a9-ae9c-d24706a0bc31,DISK]]

Status: HEALTHY
 Number of data-nodes:  10
 Number of racks:               1
 Total dirs:                    0
 Total symlinks:                0

Replicated Blocks:
 Total size:    0 B
 Total files:   0
 Total blocks (validated):      0
 Minimally replicated blocks:   0
 Over-replicated blocks:        0
 Under-replicated blocks:       0
 Mis-replicated blocks:         0
 Default replication factor:    3
 Average block replication:     0.0
 Missing blocks:                0
 Corrupt blocks:                0
 Missing replicas:              0

Erasure Coded Block Groups:
 Total size:    2684354560 B
 Total files:   1
 Total block groups (validated):        1 (avg. block group size 2684354560 B)
 Minimally erasure-coded block groups:  1 (100.0 %)
 Over-erasure-coded block groups:       0 (0.0 %)
 Under-erasure-coded block groups:      0 (0.0 %)
 Unsatisfactory placement block groups: 0 (0.0 %)
 Average block group size:      9.0
 Missing block groups:          0
 Corrupt block groups:          0
 Missing internal blocks:       0 (0.0 %)

嘗試刪除(blk-9223372036854775792、blk-9223372036854775791、blk_-9223372036854775790)三個數據塊(最多允許3個數據塊丟失)。

rm /data/current/BP-1016852637-192.168.1.192-1597819912196/current/finalized/subdir0/subdir0/blk_-9223372036854775792
rm /data/current/BP-1016852637-192.168.1.192-1597819912196/current/finalized/subdir0/subdir0/blk_-9223372036854775791
rm /data/current/BP-1016852637-192.168.1.192-1597819912196/current/finalized/subdir0/subdir0/blk_-9223372036854775790

現在嘗試讀取文件;

hdfs dfs -get  /data/ec/split000 . 

datanode首先拋未找到數據塊異常;

21/03/05 16:55:39 WARN impl.BlockReaderFactory: I/O error constructing remote block reader.
java.io.IOException: Got error, status=ERROR, status message opReadBlock BP-1016852637-192.168.1.192-1597819912196:blk_-9223372036854775792_4907534 received exception java.io.FileNotFoundException: BlockId -9223372036854775792 is not valid., for OP_READ_BLOCK, self=/192.168.1.192:42168, remote=/192.168.1.192:1019, for file /data/ec/split000, for pool BP-1016852637-192.168.1.192-1597819912196 block -9223372036854775792_4907534
        at org.apache.hadoop.hdfs.protocol.datatransfer.DataTransferProtoUtil.checkBlockOpStatus(DataTransferProtoUtil.java:134)
        at org.apache.hadoop.hdfs.protocol.datatransfer.DataTransferProtoUtil.checkBlockOpStatus(DataTransferProtoUtil.java:110)
        at org.apache.hadoop.hdfs.client.impl.BlockReaderRemote.checkSuccess(BlockReaderRemote.java:447)
        at org.apache.hadoop.hdfs.client.impl.BlockReaderRemote.newBlockReader(BlockReaderRemote.java:415)
        at org.apache.hadoop.hdfs.client.impl.BlockReaderFactory.getRemoteBlockReader(BlockReaderFactory.java:860)
        at org.apache.hadoop.hdfs.client.impl.BlockReaderFactory.getRemoteBlockReaderFromTcp(BlockReaderFactory.java:756)
        at org.apache.hadoop.hdfs.client.impl.BlockReaderFactory.build(BlockReaderFactory.java:390)
        at org.apache.hadoop.hdfs.DFSInputStream.getBlockReader(DFSInputStream.java:657)
        at org.apache.hadoop.hdfs.DFSStripedInputStream.createBlockReader(DFSStripedInputStream.java:256)
        at org.apache.hadoop.hdfs.StripeReader.readChunk(StripeReader.java:293)
        at org.apache.hadoop.hdfs.StripeReader.readStripe(StripeReader.java:323)
        at org.apache.hadoop.hdfs.DFSStripedInputStream.readOneStripe(DFSStripedInputStream.java:318)
        at org.apache.hadoop.hdfs.DFSStripedInputStream.readWithStrategy(DFSStripedInputStream.java:391)
        at org.apache.hadoop.hdfs.DFSInputStream.read(DFSInputStream.java:828)
        at java.io.DataInputStream.read(DataInputStream.java:100)
        at org.apache.hadoop.io.IOUtils.copyBytes(IOUtils.java:94)
        at org.apache.hadoop.io.IOUtils.copyBytes(IOUtils.java:68)
        at org.apache.hadoop.io.IOUtils.copyBytes(IOUtils.java:129)
        at org.apache.hadoop.fs.shell.CommandWithDestination$TargetFileSystem.writeStreamToFile(CommandWithDestination.java:497)
        at org.apache.hadoop.fs.shell.CommandWithDestination.copyStreamToTarget(CommandWithDestination.java:419)
        at org.apache.hadoop.fs.shell.CommandWithDestination.copyFileToTarget(CommandWithDestination.java:354)
        at org.apache.hadoop.fs.shell.CommandWithDestination.processPath(CommandWithDestination.java:289)
        at org.apache.hadoop.fs.shell.CommandWithDestination.processPath(CommandWithDestination.java:274)
        at org.apache.hadoop.fs.shell.Command.processPaths(Command.java:331)
        at org.apache.hadoop.fs.shell.Command.processPathArgument(Command.java:303)
        at org.apache.hadoop.fs.shell.CommandWithDestination.processPathArgument(CommandWithDestination.java:269)
        at org.apache.hadoop.fs.shell.Command.processArgument(Command.java:285)
        at org.apache.hadoop.fs.shell.Command.processArguments(Command.java:269)
        at org.apache.hadoop.fs.shell.CommandWithDestination.processArguments(CommandWithDestination.java:240)
        at org.apache.hadoop.fs.shell.FsCommand.processRawArguments(FsCommand.java:120)
        at org.apache.hadoop.fs.shell.Command.run(Command.java:176)
        at org.apache.hadoop.fs.FsShell.run(FsShell.java:328)
        at org.apache.hadoop.util.ToolRunner.run(ToolRunner.java:76)
        at org.apache.hadoop.util.ToolRunner.run(ToolRunner.java:90)
        at org.apache.hadoop.fs.FsShell.main(FsShell.java:391)

然后自動通過RS算法恢復數據;

21/03/05 16:55:39 hdfs.DFSClient: refreshLocatedBlock for striped blocks, offset=0. Obtained block LocatedStripedBlock{BP-1016852637-192.168.1.192-1597819912196:blk_-9223372036854775792_4907534; getBlockSize()=2684354560; corrupt=false; offset=0; locs=[DatanodeInfoWithStorage[192.168.1.192:1019,DS-3b10bc66-c5c9-47f8-b4ea-99441fc5df04,DISK], DatanodeInfoWithStorage[192.168.1.196:1019,DS-c618bb83-03f2-4007-a3a9-cbd11eb2a15a,DISK], DatanodeInfoWithStorage[192.168.1.193:1019,DS-6554db41-d285-4f31-9fde-2017cc211b0c,DISK], DatanodeInfoWithStorage[192.168.1.188:1019,DS-09a7d2b0-6018-43af-8a63-6be8ba9217e6,DISK], DatanodeInfoWithStorage[192.168.1.199:1019,DS-b24cf7ce-1235-478f-884d-19cde4a03c9e,DISK], DatanodeInfoWithStorage[192.168.1.187:1019,DS-43b686d2-e83c-49a3-b8e5-64c4e5edcb53,DISK], DatanodeInfoWithStorage[192.168.1.195:1019,DS-eb42e686-1ca9-44c3-9891-868c67d9d1fa,DISK], DatanodeInfoWithStorage[192.168.1.194:1019,DS-15635fea-314c-4703-a7ab-6f81db1e52cd,DISK], DatanodeInfoWithStorage[192.168.1.198:1019,DS-73bc78d2-e218-40a9-ae9c-d24706a0bc31,DISK]]; indices=[0, 1, 2, 3, 4, 5, 6, 7, 8]}, idx=0
21/03/05 16:55:39 WARN hdfs.DFSClient: [DatanodeInfoWithStorage[192.168.1.192:1019,DS-3b10bc66-c5c9-47f8-b4ea-99441fc5df04,DISK]] are unavailable and all striping blocks on them are lost. IgnoredNodes = null
21/03/05 16:55:39 hdfs.DFSClient: refreshLocatedBlock for striped blocks, offset=0. Obtained block LocatedStripedBlock{BP-1016852637-192.168.1.192-1597819912196:blk_-9223372036854775792_4907534; getBlockSize()=2684354560; corrupt=false; offset=0; locs=[DatanodeInfoWithStorage[192.168.1.192:1019,DS-3b10bc66-c5c9-47f8-b4ea-99441fc5df04,DISK], DatanodeInfoWithStorage[192.168.1.196:1019,DS-c618bb83-03f2-4007-a3a9-cbd11eb2a15a,DISK], DatanodeInfoWithStorage[192.168.1.193:1019,DS-6554db41-d285-4f31-9fde-2017cc211b0c,DISK], DatanodeInfoWithStorage[192.168.1.188:1019,DS-09a7d2b0-6018-43af-8a63-6be8ba9217e6,DISK], DatanodeInfoWithStorage[192.168.1.199:1019,DS-b24cf7ce-1235-478f-884d-19cde4a03c9e,DISK], DatanodeInfoWithStorage[192.168.1.187:1019,DS-43b686d2-e83c-49a3-b8e5-64c4e5edcb53,DISK], DatanodeInfoWithStorage[192.168.1.195:1019,DS-eb42e686-1ca9-44c3-9891-868c67d9d1fa,DISK], DatanodeInfoWithStorage[192.168.1.194:1019,DS-15635fea-314c-4703-a7ab-6f81db1e52cd,DISK], DatanodeInfoWithStorage[192.168.1.198:1019,DS-73bc78d2-e218-40a9-ae9c-d24706a0bc31,DISK]]; indices=[0, 1, 2, 3, 4, 5, 6, 7, 8]}, idx=1
21/03/05 16:55:39 hdfs.DFSClient: refreshLocatedBlock for striped blocks, offset=0. Obtained block LocatedStripedBlock{BP-1016852637-192.168.1.192-1597819912196:blk_-9223372036854775792_4907534; getBlockSize()=2684354560; corrupt=false; offset=0; locs=[DatanodeInfoWithStorage[192.168.1.192:1019,DS-3b10bc66-c5c9-47f8-b4ea-99441fc5df04,DISK], DatanodeInfoWithStorage[192.168.1.196:1019,DS-c618bb83-03f2-4007-a3a9-cbd11eb2a15a,DISK], DatanodeInfoWithStorage[192.168.1.193:1019,DS-6554db41-d285-4f31-9fde-2017cc211b0c,DISK], DatanodeInfoWithStorage[192.168.1.188:1019,DS-09a7d2b0-6018-43af-8a63-6be8ba9217e6,DISK], DatanodeInfoWithStorage[192.168.1.199:1019,DS-b24cf7ce-1235-478f-884d-19cde4a03c9e,DISK], DatanodeInfoWithStorage[192.168.1.187:1019,DS-43b686d2-e83c-49a3-b8e5-64c4e5edcb53,DISK], DatanodeInfoWithStorage[192.168.1.195:1019,DS-eb42e686-1ca9-44c3-9891-868c67d9d1fa,DISK], DatanodeInfoWithStorage[192.168.1.194:1019,DS-15635fea-314c-4703-a7ab-6f81db1e52cd,DISK], DatanodeInfoWithStorage[192.168.1.198:1019,DS-73bc78d2-e218-40a9-ae9c-d24706a0bc31,DISK]]; indices=[0, 1, 2, 3, 4, 5, 6, 7, 8]}, idx=6

最終3個丟失的數據塊被恢復,文件正常讀取。

2.4 優點

  1. 相比副本存儲方式大大降低了存儲資源和IO資源的使用;
  2. 通過XOR和RS算法保證數據安全,有效解決允許范圍內數據塊破碎和丟失導致的異常;

2.5 缺點

  1. 恢復數據時需要去讀其它數據塊和奇偶校驗碼塊數據,需要消耗IO和網絡資源;
  2. EC算法編碼和解密計算需要消耗CPU資源;
  3. 存儲大數據,並且數據塊較集中的節點運行作業負載會較高;
  4. EC文件不支持hflush, hsync, concat, setReplication, truncate, append 等操作。

3 副本存儲和EC存儲讀寫對比

寫文件;

文件大小 三副本存儲(秒) EC存儲(秒)
2.5G 6.492 9.093
5G 29.778 17.245
12G 65.156 30.989

讀文件;

文件大小 三副本存儲(秒) EC存儲(秒)
2.5G 4.915 4.755
5G 7.737 7.119
12G 14.493 13.775

4 總結

綜合副本存儲和EC存儲優缺點,EC存儲更適合用於存儲備份數據和使用頻率較少的非熱點數據,副本存儲更適用於存儲需要追加寫入和經常分析的熱點數據。

參考文獻


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM