生成分類數據集(make_classification)


from sklearn.datasets import make_classification
X, y = make_classification(n_samples=10000, # 樣本個數
n_features=25, # 特征個數
n_informative=3, # 有效特征個數
n_redundant=2, # 冗余特征個數(有效特征的隨機組合)
n_repeated=0, # 重復特征個數(有效特征和冗余特征的隨機組合)
n_classes=3, # 樣本類別
n_clusters_per_class=1, # 簇的個數
random_state=0)

print("原始特征維度", X.shape)

# 讀取數據
print("讀取數據")
# import pandas as pd
# data = pd.read_csv(datapath)

# 數據划分
print("數據划分")
from sklearn.model_selection import train_test_split
global x_train, x_valid, x_test, y_train, y_valid, y_test
x_train, x_test, y_train, y_test = train_test_split(X, y, random_state=33, test_size=0.25)
x_train, x_valid, y_train, y_valid = train_test_split(x_train, y_train, random_state=33, test_size=0.25)


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM