不懂hive中的explain,說明hive還沒入門,學會explain,能夠給我們工作中使用hive帶來極大的便利!
理論
本節將介紹 explain 的用法及參數介紹
HIVE提供了EXPLAIN命令來展示一個查詢的執行計划,這個執行計划對於我們了解底層原理,hive 調優,排查數據傾斜等很有幫助
使用語法如下:
EXPLAIN [EXTENDED|CBO|AST|DEPENDENCY|AUTHORIZATION|LOCKS|VECTORIZATION|ANALYZE] query
explain 后面可以跟以下可選參數,注意:這幾個可選參數不是 hive 每個版本都支持的
- EXTENDED:加上 extended 可以輸出有關計划的額外信息。這通常是物理信息,例如文件名。這些額外信息對我們用處不大
- CBO:輸出由Calcite優化器生成的計划。CBO 從 hive 4.0.0 版本開始支持
- AST:輸出查詢的抽象語法樹。AST 在hive 2.1.0 版本刪除了,存在bug,轉儲AST可能會導致OOM錯誤,將在4.0.0版本修復
- DEPENDENCY:dependency在EXPLAIN語句中使用會產生有關計划中輸入的額外信息。它顯示了輸入的各種屬性
- AUTHORIZATION:顯示所有的實體需要被授權執行(如果存在)的查詢和授權失敗
- LOCKS:這對於了解系統將獲得哪些鎖以運行指定的查詢很有用。LOCKS 從 hive 3.2.0 開始支持
- VECTORIZATION:將詳細信息添加到EXPLAIN輸出中,以顯示為什么未對Map和Reduce進行矢量化。從 Hive 2.3.0 開始支持
- ANALYZE:用實際的行數注釋計划。從 Hive 2.2.0 開始支持
在 hive cli 中輸入以下命令(hive 2.3.7):
explain select sum(id) from test1;
得到結果(請逐行看完,即使看不懂也要每行都看):
STAGE DEPENDENCIES:
Stage-1 is a root stage
Stage-0 depends on stages: Stage-1
STAGE PLANS:
Stage: Stage-1
Map Reduce
Map Operator Tree:
TableScan
alias: test1
Statistics: Num rows: 6 Data size: 75 Basic stats: COMPLETE Column stats: NONE
Select Operator
expressions: id (type: int)
outputColumnNames: id
Statistics: Num rows: 6 Data size: 75 Basic stats: COMPLETE Column stats: NONE
Group By Operator
aggregations: sum(id)
mode: hash
outputColumnNames: _col0
Statistics: Num rows: 1 Data size: 8 Basic stats: COMPLETE Column stats: NONE
Reduce Output Operator
sort order:
Statistics: Num rows: 1 Data size: 8 Basic stats: COMPLETE Column stats: NONE
value expressions: _col0 (type: bigint)
Reduce Operator Tree:
Group By Operator
aggregations: sum(VALUE._col0)
mode: mergepartial
outputColumnNames: _col0
Statistics: Num rows: 1 Data size: 8 Basic stats: COMPLETE Column stats: NONE
File Output Operator
compressed: false
Statistics: Num rows: 1 Data size: 8 Basic stats: COMPLETE Column stats: NONE
table:
input format: org.apache.hadoop.mapred.SequenceFileInputFormat
output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat
serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe
Stage: Stage-0
Fetch Operator
limit: -1
Processor Tree:
ListSink
看完以上內容有什么感受,是不是感覺都看不懂,不要着急,下面將會詳細講解每個參數,相信你學完下面的內容之后再看 explain 的查詢結果將游刃有余。
一個HIVE查詢被轉換為一個由一個或多個stage組成的序列(有向無環圖DAG)。這些stage可以是MapReduce stage,也可以是負責元數據存儲的stage,也可以是負責文件系統的操作(比如移動和重命名)的stage。
我們將上述結果拆分看,先從最外層開始,包含兩個大的部分:
- stage dependencies: 各個stage之間的依賴性
- stage plan: 各個stage的執行計划
先看第一部分 stage dependencies ,包含兩個 stage,Stage-1 是根stage,說明這是開始的stage,Stage-0 依賴 Stage-1,Stage-1執行完成后執行Stage-0。
再看第二部分 stage plan,里面有一個 Map Reduce,一個MR的執行計划分為兩個部分:
- Map Operator Tree: MAP端的執行計划樹
- Reduce Operator Tree: Reduce端的執行計划樹
這兩個執行計划樹里面包含這條sql語句的 operator:
- map端第一個操作肯定是加載表,所以就是 TableScan 表掃描操作,常見的屬性:
- alias: 表名稱
- Statistics: 表統計信息,包含表中數據條數,數據大小等
- Select Operator: 選取操作,常見的屬性 :
- expressions:需要的字段名稱及字段類型
- outputColumnNames:輸出的列名稱
- Statistics:表統計信息,包含表中數據條數,數據大小等
- Group By Operator:分組聚合操作,常見的屬性:
- aggregations:顯示聚合函數信息
- mode:聚合模式,值有 hash:隨機聚合,就是hash partition;partial:局部聚合;final:最終聚合
- keys:分組的字段,如果沒有分組,則沒有此字段
- outputColumnNames:聚合之后輸出列名
- Statistics: 表統計信息,包含分組聚合之后的數據條數,數據大小等
- Reduce Output Operator:輸出到reduce操作,常見屬性:
- sort order:值為空 不排序;值為 + 正序排序,值為 - 倒序排序;值為 +- 排序的列為兩列,第一列為正序,第二列為倒序
- Filter Operator:過濾操作,常見的屬性:
- predicate:過濾條件,如sql語句中的where id>=1,則此處顯示(id >= 1)
- Map Join Operator:join 操作,常見的屬性:
- condition map:join方式 ,如Inner Join 0 to 1 Left Outer Join0 to 2
- keys: join 的條件字段
- outputColumnNames: join 完成之后輸出的字段
- Statistics: join 完成之后生成的數據條數,大小等
- File Output Operator:文件輸出操作,常見的屬性
- compressed:是否壓縮
- table:表的信息,包含輸入輸出文件格式化方式,序列化方式等
- Fetch Operator 客戶端獲取數據操作,常見的屬性:
- limit,值為 -1 表示不限制條數,其他值為限制的條數
好,學到這里再翻到上面 explain 的查詢結果,是不是感覺基本都能看懂了。
實踐
本節介紹 explain 能夠為我們在生產實踐中帶來哪些便利及解決我們哪些迷惑
1. join 語句會過濾 null 的值嗎?
現在,我們在hive cli 輸入以下查詢計划語句
select a.id,b.user_name from test1 a join test2 b on a.id=b.id;
問:上面這條 join 語句會過濾 id 為 null 的值嗎
執行下面語句:
explain select a.id,b.user_name from test1 a join test2 b on a.id=b.id;
我們來看結果 (為了適應頁面展示,僅截取了部分輸出信息):
TableScan
alias: a
Statistics: Num rows: 6 Data size: 75 Basic stats: COMPLETE Column stats: NONE
Filter Operator
predicate: id is not null (type: boolean)
Statistics: Num rows: 6 Data size: 75 Basic stats: COMPLETE Column stats: NONE
Select Operator
expressions: id (type: int)
outputColumnNames: _col0
Statistics: Num rows: 6 Data size: 75 Basic stats: COMPLETE Column stats: NONE
HashTable Sink Operator
keys:
0 _col0 (type: int)
1 _col0 (type: int)
...
從上述結果可以看到 predicate: id is not null 這樣一行,說明 join 時會自動過濾掉關聯字段為 null
值的情況,但 left join 或 full join 是不會自動過濾的,大家可以自行嘗試下。
2. group by 分組語句會進行排序嗎?
看下面這條sql
select id,max(user_name) from test1 group by id;
問:group by 分組語句會進行排序嗎
直接來看 explain 之后結果 (為了適應頁面展示,僅截取了部分輸出信息)
TableScan
alias: test1
Statistics: Num rows: 9 Data size: 108 Basic stats: COMPLETE Column stats: NONE
Select Operator
expressions: id (type: int), user_name (type: string)
outputColumnNames: id, user_name
Statistics: Num rows: 9 Data size: 108 Basic stats: COMPLETE Column stats: NONE
Group By Operator
aggregations: max(user_name)
keys: id (type: int)
mode: hash
outputColumnNames: _col0, _col1
Statistics: Num rows: 9 Data size: 108 Basic stats: COMPLETE Column stats: NONE
Reduce Output Operator
key expressions: _col0 (type: int)
sort order: +
Map-reduce partition columns: _col0 (type: int)
Statistics: Num rows: 9 Data size: 108 Basic stats: COMPLETE Column stats: NONE
value expressions: _col1 (type: string)
...
我們看 Group By Operator,里面有 keys: id (type: int) 說明按照 id 進行分組的,再往下看還有 sort order: + ,說明是按照 id 字段進行正序排序的。
3. 哪條sql執行效率高呢?
觀察兩條sql語句
SELECT
a.id,
b.user_name
FROM
test1 a
JOIN test2 b ON a.id = b.id
WHERE
a.id > 2;
SELECT
a.id,
b.user_name
FROM
(SELECT * FROM test1 WHERE id > 2) a
JOIN test2 b ON a.id = b.id;
這兩條sql語句輸出的結果是一樣的,但是哪條sql執行效率高呢
有人說第一條sql執行效率高,因為第二條sql有子查詢,子查詢會影響性能
有人說第二條sql執行效率高,因為先過濾之后,在進行join時的條數減少了,所以執行效率就高了
到底哪條sql效率高呢,我們直接在sql語句前面加上 explain,看下執行計划不就知道了嘛
在第一條sql語句前加上 explain,得到如下結果
hive (default)> explain select a.id,b.user_name from test1 a join test2 b on a.id=b.id where a.id >2;
OK
Explain
STAGE DEPENDENCIES:
Stage-4 is a root stage
Stage-3 depends on stages: Stage-4
Stage-0 depends on stages: Stage-3
STAGE PLANS:
Stage: Stage-4
Map Reduce Local Work
Alias -> Map Local Tables:
$hdt$_0:a
Fetch Operator
limit: -1
Alias -> Map Local Operator Tree:
$hdt$_0:a
TableScan
alias: a
Statistics: Num rows: 6 Data size: 75 Basic stats: COMPLETE Column stats: NONE
Filter Operator
predicate: (id > 2) (type: boolean)
Statistics: Num rows: 2 Data size: 25 Basic stats: COMPLETE Column stats: NONE
Select Operator
expressions: id (type: int)
outputColumnNames: _col0
Statistics: Num rows: 2 Data size: 25 Basic stats: COMPLETE Column stats: NONE
HashTable Sink Operator
keys:
0 _col0 (type: int)
1 _col0 (type: int)
Stage: Stage-3
Map Reduce
Map Operator Tree:
TableScan
alias: b
Statistics: Num rows: 6 Data size: 75 Basic stats: COMPLETE Column stats: NONE
Filter Operator
predicate: (id > 2) (type: boolean)
Statistics: Num rows: 2 Data size: 25 Basic stats: COMPLETE Column stats: NONE
Select Operator
expressions: id (type: int), user_name (type: string)
outputColumnNames: _col0, _col1
Statistics: Num rows: 2 Data size: 25 Basic stats: COMPLETE Column stats: NONE
Map Join Operator
condition map:
Inner Join 0 to 1
keys:
0 _col0 (type: int)
1 _col0 (type: int)
outputColumnNames: _col0, _col2
Statistics: Num rows: 2 Data size: 27 Basic stats: COMPLETE Column stats: NONE
Select Operator
expressions: _col0 (type: int), _col2 (type: string)
outputColumnNames: _col0, _col1
Statistics: Num rows: 2 Data size: 27 Basic stats: COMPLETE Column stats: NONE
File Output Operator
compressed: false
Statistics: Num rows: 2 Data size: 27 Basic stats: COMPLETE Column stats: NONE
table:
input format: org.apache.hadoop.mapred.SequenceFileInputFormat
output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat
serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe
Local Work:
Map Reduce Local Work
Stage: Stage-0
Fetch Operator
limit: -1
Processor Tree:
ListSink
在第二條sql語句前加上 explain,得到如下結果
hive (default)> explain select a.id,b.user_name from(select * from test1 where id>2 ) a join test2 b on a.id=b.id;
OK
Explain
STAGE DEPENDENCIES:
Stage-4 is a root stage
Stage-3 depends on stages: Stage-4
Stage-0 depends on stages: Stage-3
STAGE PLANS:
Stage: Stage-4
Map Reduce Local Work
Alias -> Map Local Tables:
$hdt$_0:test1
Fetch Operator
limit: -1
Alias -> Map Local Operator Tree:
$hdt$_0:test1
TableScan
alias: test1
Statistics: Num rows: 6 Data size: 75 Basic stats: COMPLETE Column stats: NONE
Filter Operator
predicate: (id > 2) (type: boolean)
Statistics: Num rows: 2 Data size: 25 Basic stats: COMPLETE Column stats: NONE
Select Operator
expressions: id (type: int)
outputColumnNames: _col0
Statistics: Num rows: 2 Data size: 25 Basic stats: COMPLETE Column stats: NONE
HashTable Sink Operator
keys:
0 _col0 (type: int)
1 _col0 (type: int)
Stage: Stage-3
Map Reduce
Map Operator Tree:
TableScan
alias: b
Statistics: Num rows: 6 Data size: 75 Basic stats: COMPLETE Column stats: NONE
Filter Operator
predicate: (id > 2) (type: boolean)
Statistics: Num rows: 2 Data size: 25 Basic stats: COMPLETE Column stats: NONE
Select Operator
expressions: id (type: int), user_name (type: string)
outputColumnNames: _col0, _col1
Statistics: Num rows: 2 Data size: 25 Basic stats: COMPLETE Column stats: NONE
Map Join Operator
condition map:
Inner Join 0 to 1
keys:
0 _col0 (type: int)
1 _col0 (type: int)
outputColumnNames: _col0, _col2
Statistics: Num rows: 2 Data size: 27 Basic stats: COMPLETE Column stats: NONE
Select Operator
expressions: _col0 (type: int), _col2 (type: string)
outputColumnNames: _col0, _col1
Statistics: Num rows: 2 Data size: 27 Basic stats: COMPLETE Column stats: NONE
File Output Operator
compressed: false
Statistics: Num rows: 2 Data size: 27 Basic stats: COMPLETE Column stats: NONE
table:
input format: org.apache.hadoop.mapred.SequenceFileInputFormat
output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat
serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe
Local Work:
Map Reduce Local Work
Stage: Stage-0
Fetch Operator
limit: -1
Processor Tree:
ListSink
大家有什么發現,除了表別名不一樣,其他的執行計划完全一樣,都是先進行 where 條件過濾,在進行 join 條件關聯。說明 hive 底層會自動幫我們進行優化,所以這兩條sql語句執行效率是一樣的。
最后
以上僅列舉了3個我們生產中既熟悉又有點迷糊的例子,explain 還有很多其他的用途,如查看stage的依賴情況、排查數據傾斜、hive 調優等,小伙伴們可以自行嘗試。
