sklearn模型的保存和加載


sklearn模型的保存和加載API

  • from sklearn.externals import joblib
    • 保存:joblib.dump(estimator, 'test.pkl')
    • 加載:estimator = joblib.load('test.pkl')

線性回歸的模型保存加載案例

from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression, SGDRegressor, Ridge, RidgeCV
from sklearn.metrics import mean_squared_error
from sklearn.externals import joblib


def dump_load_demo():
    """
    模型保存和加載
    :return: None
    """
    # 1.獲取數據
    boston = load_boston()

    # 2.數據基本處理
    # 2.1 數據集划分
    x_train, x_test, y_train, y_test = train_test_split(boston.data, boston.target, random_state=22, test_size=0.2)

    # 3.特征工程 --標准化
    transfer = StandardScaler()
    x_train = transfer.fit_transform(x_train)
    x_test = transfer.fit_transform(x_test)
    #
    # # 4.機器學習(線性回歸)
    # # 4.1 模型訓練
    # estimator = Ridge()
    #
    # estimator.fit(x_train, y_train)
    # print("這個模型的偏置是:\n", estimator.intercept_)
    #
    # # 4.2 模型保存
    # joblib.dump(estimator, "../../data/test.pkl")

    # 4.3 模型加載
    estimator = joblib.load("../../data/test.pkl")

    # 5.模型評估
    # 5.1 預測值和准確率
    y_pre = estimator.predict(x_test)
    print("預測值是:\n", y_pre)

    score = estimator.score(x_test, y_test)
    print("准確率是:\n", score)

    # 5.2 均方誤差
    ret = mean_squared_error(y_test, y_pre)
    print("均方誤差是:\n", ret)


if __name__ == '__main__':
    dump_load_demo()


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM