windows 10 安裝 pytorch 1.7.1


1 查看是否有GPU

 下載和安裝 Python 3.8

 下載和安裝 PyCharm

 

2 下載 Anaconda

https://www.anaconda.com/

https://www.anaconda.com/products/individual

https://repo.anaconda.com/archive/Anaconda3-2020.11-Windows-x86_64.exe

 

3 安裝 Anaconda

 

 

 

 

 

 

 

 

  • Anaconda Navigator :用於管理工具包和環境的圖形用戶界面,后續涉及的眾多管理命令也可以在 Navigator 中手工實現。
  • Jupyter notebook :基於web的交互式計算環境,可以編輯易於人們閱讀的文檔,用於展示數據分析的過程。
  • qtconsole :一個可執行 IPython 的仿終端圖形界面程序,相比 Python Shell 界面,qtconsole 可以直接顯示代碼生成的圖形,實現多行代碼輸入執行,以及內置許多有用的功能和函數。
  • Spyder :一個使用Python語言、跨平台的、科學運算集成開發環境。

 

4 打開Anaconda

Run as administrator

 

 

5 管理虛環境

創建虛擬環境,為自己的程序安裝單獨的虛擬環境.
創建一個名稱為 myenvpy38 的虛擬環境並指定python版本為3.8
conda create -n myenvpy38 python=3.8

environment location: E:\Eprogramfiles\Anaconda3\envs\myenvpy38

其中 E:\Eprogramfiles\Anaconda3\ 是anaconda的安裝路徑。


切換虛擬環境
切換到這個環境, 用activae命令,后面加上要切換的環境名稱
conda activate myenvpy38

 

查看所有的環境
如果忘記了名稱我們可以先用
conda env list


# To deactivate an active environment, use
# conda deactivate

 

conda env list

 

 

conda list

 

 

安裝第三方包
 conda install packageName
 或者
 pip install packageName


卸載第三方包
 conda remove packageName
  或者
  pip uninstall packageName


6 安裝PyTorch

 

以下步驟安裝不成功:

https://pytorch.org/

 

conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch



The following packages will be downloaded:

    package                    |            build
    ---------------------------|-----------------
    cudatoolkit-10.2.89        |       h74a9793_1       317.2 MB
    libuv-1.40.0               |       he774522_0         255 KB
    lz4-c-1.9.3                |       h2bbff1b_0         131 KB
    mkl-service-2.3.0          |   py38h196d8e1_0          47 KB
    ninja-1.10.2               |   py38h6d14046_0         247 KB
    pillow-8.1.0               |   py38h4fa10fc_0         664 KB
    pytorch-1.7.1              |py3.8_cuda102_cudnn7_0       768.1 MB  pytorch
    torchaudio-0.7.2           |             py38         2.7 MB  pytorch
    torchvision-0.8.2          |       py38_cu102         7.2 MB  pytorch
    ------------------------------------------------------------
                                           Total:        1.07 GB

The following NEW packages will be INSTALLED:

  blas               pkgs/main/win-64::blas-1.0-mkl
  cudatoolkit        pkgs/main/win-64::cudatoolkit-10.2.89-h74a9793_1
  freetype           pkgs/main/win-64::freetype-2.10.4-hd328e21_0
  intel-openmp       pkgs/main/win-64::intel-openmp-2020.2-254
  jpeg               pkgs/main/win-64::jpeg-9b-hb83a4c4_2
  libpng             pkgs/main/win-64::libpng-1.6.37-h2a8f88b_0
  libtiff            pkgs/main/win-64::libtiff-4.1.0-h56a325e_1
  libuv              pkgs/main/win-64::libuv-1.40.0-he774522_0
  lz4-c              pkgs/main/win-64::lz4-c-1.9.3-h2bbff1b_0
  mkl                pkgs/main/win-64::mkl-2020.2-256
  mkl-service        pkgs/main/win-64::mkl-service-2.3.0-py38h196d8e1_0
  mkl_fft            pkgs/main/win-64::mkl_fft-1.2.0-py38h45dec08_0
  mkl_random         pkgs/main/win-64::mkl_random-1.1.1-py38h47e9c7a_0
  ninja              pkgs/main/win-64::ninja-1.10.2-py38h6d14046_0
  numpy              pkgs/main/win-64::numpy-1.19.2-py38hadc3359_0
  numpy-base         pkgs/main/win-64::numpy-base-1.19.2-py38ha3acd2a_0
  olefile            pkgs/main/noarch::olefile-0.46-py_0
  pillow             pkgs/main/win-64::pillow-8.1.0-py38h4fa10fc_0
  pytorch            pytorch/win-64::pytorch-1.7.1-py3.8_cuda102_cudnn7_0
  six                pkgs/main/win-64::six-1.15.0-py38haa95532_0
  tk                 pkgs/main/win-64::tk-8.6.10-he774522_0
  torchaudio         pytorch/win-64::torchaudio-0.7.2-py38
  torchvision        pytorch/win-64::torchvision-0.8.2-py38_cu102
  typing_extensions  pkgs/main/noarch::typing_extensions-3.7.4.3-py_0
  xz                 pkgs/main/win-64::xz-5.2.5-h62dcd97_0
  zstd               pkgs/main/win-64::zstd-1.4.5-h04227a9_0


Proceed ([y]/n)? y


Downloading and Extracting Packages
torchaudio-0.7.2     | 2.7 MB    | ######5                                                                      |   9%
pytorch-1.7.1        | 768.1 MB  |                                                                                    |   0%
torchvision-0.8.2    | 7.2 MB    | #2                                                                                 |   2%
ninja-1.10.2         | 247 KB    | ################################################################################## | 100%
mkl-service-2.3.0    | 47 KB     | ################################################################################## | 100%
libuv-1.40.0         | 255 KB    | ################################################################################## | 100%
pillow-8.1.0         | 664 KB    | ################################################################################## | 100%
cudatoolkit-10.2.89  | 317.2 MB  | ###3                                                                               |   4%
lz4-c-1.9.3          | 131 KB    | ################################################################################## | 100%

CondaHTTPError: HTTP 000 CONNECTION FAILED for url <https://conda.anaconda.org/pytorch/win-64/torchaudio-0.7.2-py38.tar.bz2>
Elapsed: -

An HTTP error occurred when trying to retrieve this URL.
HTTP errors are often intermittent, and a simple retry will get you on your way.

CondaHTTPError: HTTP 000 CONNECTION FAILED for url <https://conda.anaconda.org/pytorch/win-64/pytorch-1.7.1-py3.8_cuda102_cudnn7_0.tar.bz2>
Elapsed: -

An HTTP error occurred when trying to retrieve this URL.
HTTP errors are often intermittent, and a simple retry will get you on your way.

CondaHTTPError: HTTP 000 CONNECTION FAILED for url <https://conda.anaconda.org/pytorch/win-64/torchvision-0.8.2-py38_cu102.tar.bz2>
Elapsed: -

An HTTP error occurred when trying to retrieve this URL.
HTTP errors are often intermittent, and a simple retry will get you on your way.

("Connection broken: ConnectionResetError(10054, 'An existing connection was forcibly closed by the remote host', None, 10054, None)", ConnectionResetError(10054, 'An existing connection was forcibly closed by the remote host', None, 10054, None))


(myenvpy38) E:\Eprogramfiles\Anaconda3\myenv>


改變安裝策略:
1 查看顯卡對應的 CUDA
C盤搜索 nvcuda64.dll,右鍵,屬性

 

 2 下載 cuda_11.0.3

https://developer.nvidia.com/cuda-toolkit-archive

http://developer.download.nvidia.com/compute/cuda/11.0.3/local_installers/cuda_11.0.3_451.82_win10.exe

文件3G左右,用迅雷下載比較快

 

3 安裝 cuda_11.0.3

默認都是必須安裝在C盤,超過4.5GB空間。自定義安裝的時候可以選擇路徑 e:\Eprogramfiles\cuda11\dev\,大部分文件仍然安裝到C盤了(C:\Program Files\NVIDIA GPU Computing Toolkit)

檢查是否安裝成功

e:\Eprogramfiles\cuda11\dev\bin>nvcc -V
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2020 NVIDIA Corporation
Built on Wed_Jul_22_19:09:35_Pacific_Daylight_Time_2020
Cuda compilation tools, release 11.0, V11.0.221
Build cuda_11.0_bu.relgpu_drvr445TC445_37.28845127_0

e:\Eprogramfiles\cuda11\dev\bin>

 

 

 

4 下載與 cuda 相應的 cudnn

https://developer.nvidia.com/rdp/cudnn-archive

https://developer.nvidia.com/compute/machine-learning/cudnn/secure/8.0.4/11.0_20200923/cudnn-11.0-windows-x64-v8.0.4.30.zip

 

解壓 cudnn-11.0-windows-x64-v8.0.4.30.zip

 

前面安裝的cuda的路徑下也有這三個對應的文件夾(bin,include,lib),我們要做的就是用cudnn的三個文件夾覆蓋cuda中對應的三個文件夾.直接粘過去就行了!

測試是否將cudnn安裝好
首先進入CUDA的安裝路徑 -> extras -> demo_suite,  E:\Eprogramfiles\cuda11\dev\extras\demo_suite 里面有兩個測試程序,一個是bandwidthTest.exe,一個是deviceQuery.exe

然后可以在demo_suite這個文件夾下打開cmd,運行那兩個exe,結果如下圖

 

E:\Eprogramfiles\cuda11\dev\extras\demo_suite>bandwidthTest.exe
[CUDA Bandwidth Test] - Starting...
Running on...

 Device 0: GeForce GTX 1050
 Quick Mode

 Host to Device Bandwidth, 1 Device(s)
 PINNED Memory Transfers
   Transfer Size (Bytes)        Bandwidth(MB/s)
   33554432                     12564.8

 Device to Host Bandwidth, 1 Device(s)
 PINNED Memory Transfers
   Transfer Size (Bytes)        Bandwidth(MB/s)
   33554432                     12848.8

 Device to Device Bandwidth, 1 Device(s)
 PINNED Memory Transfers
   Transfer Size (Bytes)        Bandwidth(MB/s)
   33554432                     95124.9

Result = PASS

NOTE: The CUDA Samples are not meant for performance measurements. Results may vary when GPU Boost is enabled.

E:\Eprogramfiles\cuda11\dev\extras\demo_suite>deviceQuery.exe
deviceQuery.exe Starting...

 CUDA Device Query (Runtime API) version (CUDART static linking)

Detected 1 CUDA Capable device(s)

Device 0: "GeForce GTX 1050"
  CUDA Driver Version / Runtime Version          11.0 / 11.0
  CUDA Capability Major/Minor version number:    6.1
  Total amount of global memory:                 4096 MBytes (4294967296 bytes)
  ( 5) Multiprocessors, (128) CUDA Cores/MP:     640 CUDA Cores
  GPU Max Clock rate:                            1493 MHz (1.49 GHz)
  Memory Clock rate:                             3504 Mhz
  Memory Bus Width:                              128-bit
  L2 Cache Size:                                 524288 bytes
  Maximum Texture Dimension Size (x,y,z)         1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384)
  Maximum Layered 1D Texture Size, (num) layers  1D=(32768), 2048 layers
  Maximum Layered 2D Texture Size, (num) layers  2D=(32768, 32768), 2048 layers
  Total amount of constant memory:               zu bytes
  Total amount of shared memory per block:       zu bytes
  Total number of registers available per block: 65536
  Warp size:                                     32
  Maximum number of threads per multiprocessor:  2048
  Maximum number of threads per block:           1024
  Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
  Max dimension size of a grid size    (x,y,z): (2147483647, 65535, 65535)
  Maximum memory pitch:                          zu bytes
  Texture alignment:                             zu bytes
  Concurrent copy and kernel execution:          Yes with 5 copy engine(s)
  Run time limit on kernels:                     Yes
  Integrated GPU sharing Host Memory:            No
  Support host page-locked memory mapping:       Yes
  Alignment requirement for Surfaces:            Yes
  Device has ECC support:                        Disabled
  CUDA Device Driver Mode (TCC or WDDM):         WDDM (Windows Display Driver Model)
  Device supports Unified Addressing (UVA):      Yes
  Device supports Compute Preemption:            Yes
  Supports Cooperative Kernel Launch:            Yes
  Supports MultiDevice Co-op Kernel Launch:      No
  Device PCI Domain ID / Bus ID / location ID:   0 / 1 / 0
  Compute Mode:
     < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >

deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 11.0, CUDA Runtime Version = 11.0, NumDevs = 1, Device0 = GeForce GTX 1050
Result = PASS

 

5 安裝PyTorch

=====================================================

 conda activate myenvpy38

鏡像源配置一下, 仍然特別慢
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
conda config --set show_channel_urls yes

conda install pytorch torchvision torchaudio cudatoolkit=11.0 -c pytorch

 =====================================================

 

在下載的過程中下載torch1.7.1的時候比較慢,下載的過程中還會超時,故直接拷貝下載地址下載whl文件,安裝whl文件。

單獨下載:

https://download.pytorch.org/whl/torch_stable.html

https://download.pytorch.org/whl/cu110/torchvision-0.8.2%2Bcu110-cp38-cp38-win_amd64.whl

https://download.pytorch.org/whl/cu110/torch-1.7.1%2Bcu110-cp38-cp38-win_amd64.whl

https://download.pytorch.org/whl/torchaudio-0.7.2-cp38-none-win_amd64.whl

 

 conda activate myenvpy38

 

pip --default-timeout=1000 install -U numpy  -i http://pypi.douban.com/simple/ --trusted-host pypi.douban.com

pip --default-timeout=1000 install -U matplotlib.pyplot -i http://pypi.douban.com/simple/ --trusted-host pypi.douban.com
pip --default-timeout=1000 install -U matplotlib  -i http://pypi.douban.com/simple/ --trusted-host pypi.douban.com
 
pip --default-timeout=1000 install -U pandas -i http://pypi.douban.com/simple/ --trusted-host pypi.douban.com

pip --default-timeout=1000 install -U sklearn -i http://pypi.douban.com/simple/ --trusted-host pypi.douban.com

pip --default-timeout=1000 install -U typing-extensions -i http://pypi.douban.com/simple/ --trusted-host pypi.douban.com

 

安裝有先后順序,先torch

 E:\Eprogramfiles\Anaconda3\envs\myenvpy38>pip install "D:\software\torch-1.7.1+cu110-cp38-cp38-win_amd64.whl"

  E:\Eprogramfiles\Anaconda3\envs\myenvpy38>pip install D:\software\torchaudio-0.7.2-cp38-none-win_amd64.whl

 E:\Eprogramfiles\Anaconda3\envs\myenvpy38>pip install "D:\software\torchvision-0.8.2+cu110-cp38-cp38-win_amd64.whl"

 


REF
https://blog.csdn.net/qq_36306288/article/details/111243361

https://blog.csdn.net/weixin_42144294/article/details/111624608
https://www.cnblogs.com/chenyameng/p/14273935.html

https://blog.csdn.net/adong6561975/article/details/106548396/



免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM