Mongo按指定字段 分段分組 聚合統計


現在有一批數據如下(表名detectOriginalData):

{
    "_id" : "760c29a2720ead1681184dfbef0aaae4",
    "imgSavePath" : "/opt/temp/face/publicceaf441cf933bba310e4.JPG",
    "faceDetail" : {
        "face_token" : "760c29a2720ead1681184dfbef0aaae4",
        "location" : {
            "left" : 110.04,
            "top" : 244.39,
            "width" : 311.0,
            "height" : 263.0,
            "rotation" : -2
        }
    },
    "cdt" : ISODate("2020-12-25T10:53:43.647+08:00")
}

現在,我們要統計faceDetail.location.width,找出width處於300-400之間,每隔10分一段(也就是300-310、310-320...390-400共10組),之間的faceToken和imgSavePath都有哪些

最后實現的一種為:

db.detectOriginalData.aggregate([
        {$match: {"faceDetail.location.width": {$lte: 400, $gte: 300}}},
        {$project: {val: "$faceDetail.location.width", ftk: "$faceDetail.face_token", imgPath: "$imgSavePath"}},
        {$group: {
            "_id": {
                $subtract: [
                {$subtract: ["$val", 0]},
                {$mod: [{$subtract: ["$val", 0]}, 10]}
                ]
            },
            ftkList: {$push: "$ftk"},
            imgList: {$push: "$imgPath"},
            ftkCount: {$sum: 1}
        }},
        {$sort: {_id: -1}}
])

 

下面為開始用的繞了彎路的一種實現方式,可以忽略。。。

db.detectOriginalData.aggregate([
        {$match: {"faceDetail.location.width": {$lte: 400, $gte: 300}}},
        {$project: {val: "$faceDetail.location.width", ftk: "$faceDetail.face_token"}},
        {$lookup:{
            from:"detectOriginalData",
            localField:"ftk",
            foreignField: "_id",
            as: "img"}
        },
        {$project: {val: 1, ftk: 1, imgPath: "$img.imgSavePath"}},
        {$unwind: "$imgPath"},
        {$group: {
            "_id": {
                $subtract: [
                {$subtract: ["$val", 0]},
                {$mod: [{$subtract: ["$val", 0]}, 10]}
                ]
            },
            ftkList: {$push: "$ftk"},
            imgList: {$push: "$imgPath"},
            ftkCount: {$sum: 1}
        }},
        {$sort: {_id: -1}}
])

最后的結果如下(_id=320,代表width處於320-330之間的數據):

 

************2021-01-19 新增,測試小伙伴提了個統計需求。。。。。。

先看統計數據關聯的另一張表(過濾詳情表detectFilterDetail),大概數據結構如下(只截取部分字段):

{
    "_id" : ObjectId("5feaa27fd873663e8085507d"),
    "faceToken" : "2268048d7df15fa15652cc745261404e",
    "paramRecordId" : "5feaa273d873663e80855047",
    "paramBoolean" : {
        "ageMax" : true,
        "ageMin" : true,
        "qualityBlur" : true,
        "qualityOcclusionMouth" : true,
        "locationWidthMin" : false,
        "locationHeightMin" : false
    },
    "filterCount" : 2,
    "filterKey" : [ 
        "locationWidthMin", 
        "locationHeightMin"
    ],
    "cdt" : ISODate("2020-12-29T11:29:03.651+08:00")
}

現在是想要統計,detectFilterDetail表的detectFilterDetail.paramBoolean.qualityOcclusionMouse為true的分布,也就是和上一個統計一樣,統計每個分段里面,為true的數量有多少

琢磨了一會,大概實現sql如下:

db.detectFilterDetail.aggregate([
        {$match: {"paramRecordId": "5feaa273d873663e80855047", "paramBoolean.qualityOcclusionMouth": true}},
        {$project: {flag: "$paramBoolean.qualityOcclusionMouth", ftk: "$faceToken"}},
        {$lookup:{
            from:"detectOriginalData",
            localField:"ftk",
            foreignField: "_id",
            as: "f_ftk"}
        },
        {$project: {flag: 1, ftk: 1, val: "$f_ftk.faceDetail.quality.occlusion.mouth"}},
        {$unwind: "$val"},
        {$group: {
            "_id": {
                $subtract: [
                {$subtract: ["$val", 0]},
                {$mod: [{$subtract: ["$val", 0]}, 0.1]}
                ]
            },
            ftkList: {$push: "$ftk"},
            ftkCount: {$sum: 1}
        }},
        //{$group: {"_id": null, count: {$sum: 1}}}
        {$sort: {_id: -1}}
])

結果如下:

 

 ************2021-05-17 新增,有個其他場景統計需求,用這份數據測試一下。。。。。。

(過濾詳情表detectFilterDetail)統計需求就是:根據 過濾參數個數filterCount字段 分組,既要 統計總數,又要統計其中某個具體參數占的數量(就是paramBoolean里面某個具體參數占的數量,這里選paramBoolean.qualityBlur來測試

實現sql如下:

db.detectFilterDetail.aggregate([
    {$match: {"cdt": {$lte: new Date("2021-05-11T18:35:04.071+08:00")}}},
    {$group: {
        _id: "$filterCount", 
        summmm: {$sum: 1}, 
        countBlur: {$sum: {
            $cond: { if: { $eq: [ "$paramBoolean.qualityBlur", false ] }, then: 1, else: 0 }
        }}
    }}
]);

結果如下:

 

 其中,$cond還有一種更簡單的寫法:

$cond: [{$eq: ["$paramBoolean.qualityOcclusionNose", false]}, 1, 0 ]

 PS:暫時做個記錄,后續再稍微解釋各個語句的大概作用


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM