現在有一批數據如下(表名detectOriginalData):
{ "_id" : "760c29a2720ead1681184dfbef0aaae4", "imgSavePath" : "/opt/temp/face/publicceaf441cf933bba310e4.JPG", "faceDetail" : { "face_token" : "760c29a2720ead1681184dfbef0aaae4", "location" : { "left" : 110.04, "top" : 244.39, "width" : 311.0, "height" : 263.0, "rotation" : -2 } }, "cdt" : ISODate("2020-12-25T10:53:43.647+08:00") }
現在,我們要統計faceDetail.location.width,找出width處於300-400之間,每隔10分一段(也就是300-310、310-320...390-400共10組),之間的faceToken和imgSavePath都有哪些
最后實現的一種為:
db.detectOriginalData.aggregate([ {$match: {"faceDetail.location.width": {$lte: 400, $gte: 300}}}, {$project: {val: "$faceDetail.location.width", ftk: "$faceDetail.face_token", imgPath: "$imgSavePath"}}, {$group: { "_id": { $subtract: [ {$subtract: ["$val", 0]}, {$mod: [{$subtract: ["$val", 0]}, 10]} ] }, ftkList: {$push: "$ftk"}, imgList: {$push: "$imgPath"}, ftkCount: {$sum: 1} }}, {$sort: {_id: -1}} ])
下面為開始用的繞了彎路的一種實現方式,可以忽略。。。
db.detectOriginalData.aggregate([ {$match: {"faceDetail.location.width": {$lte: 400, $gte: 300}}}, {$project: {val: "$faceDetail.location.width", ftk: "$faceDetail.face_token"}}, {$lookup:{ from:"detectOriginalData", localField:"ftk", foreignField: "_id", as: "img"} }, {$project: {val: 1, ftk: 1, imgPath: "$img.imgSavePath"}}, {$unwind: "$imgPath"}, {$group: { "_id": { $subtract: [ {$subtract: ["$val", 0]}, {$mod: [{$subtract: ["$val", 0]}, 10]} ] }, ftkList: {$push: "$ftk"}, imgList: {$push: "$imgPath"}, ftkCount: {$sum: 1} }}, {$sort: {_id: -1}} ])
最后的結果如下(_id=320,代表width處於320-330之間的數據):
************2021-01-19 新增,測試小伙伴提了個統計需求。。。。。。
先看統計數據關聯的另一張表(過濾詳情表detectFilterDetail),大概數據結構如下(只截取部分字段):
{ "_id" : ObjectId("5feaa27fd873663e8085507d"), "faceToken" : "2268048d7df15fa15652cc745261404e", "paramRecordId" : "5feaa273d873663e80855047", "paramBoolean" : { "ageMax" : true, "ageMin" : true, "qualityBlur" : true, "qualityOcclusionMouth" : true, "locationWidthMin" : false, "locationHeightMin" : false }, "filterCount" : 2, "filterKey" : [ "locationWidthMin", "locationHeightMin" ], "cdt" : ISODate("2020-12-29T11:29:03.651+08:00") }
現在是想要統計,detectFilterDetail表的detectFilterDetail.paramBoolean.qualityOcclusionMouse為true的分布,也就是和上一個統計一樣,統計每個分段里面,為true的數量有多少
琢磨了一會,大概實現sql如下:
db.detectFilterDetail.aggregate([ {$match: {"paramRecordId": "5feaa273d873663e80855047", "paramBoolean.qualityOcclusionMouth": true}}, {$project: {flag: "$paramBoolean.qualityOcclusionMouth", ftk: "$faceToken"}}, {$lookup:{ from:"detectOriginalData", localField:"ftk", foreignField: "_id", as: "f_ftk"} }, {$project: {flag: 1, ftk: 1, val: "$f_ftk.faceDetail.quality.occlusion.mouth"}}, {$unwind: "$val"}, {$group: { "_id": { $subtract: [ {$subtract: ["$val", 0]}, {$mod: [{$subtract: ["$val", 0]}, 0.1]} ] }, ftkList: {$push: "$ftk"}, ftkCount: {$sum: 1} }}, //{$group: {"_id": null, count: {$sum: 1}}} {$sort: {_id: -1}} ])
結果如下:
************2021-05-17 新增,有個其他場景統計需求,用這份數據測試一下。。。。。。
(過濾詳情表detectFilterDetail)統計需求就是:根據 過濾參數個數filterCount字段 分組,既要 統計總數,又要統計其中某個具體參數占的數量(就是paramBoolean里面某個具體參數占的數量,這里選paramBoolean.qualityBlur來測試
)
實現sql如下:
db.detectFilterDetail.aggregate([ {$match: {"cdt": {$lte: new Date("2021-05-11T18:35:04.071+08:00")}}}, {$group: { _id: "$filterCount", summmm: {$sum: 1}, countBlur: {$sum: { $cond: { if: { $eq: [ "$paramBoolean.qualityBlur", false ] }, then: 1, else: 0 } }} }} ]);
結果如下:
其中,$cond還有一種更簡單的寫法:
$cond: [{$eq: ["$paramBoolean.qualityOcclusionNose", false]}, 1, 0 ]
PS:暫時做個記錄,后續再稍微解釋各個語句的大概作用