- 代碼展示
import argparse import cv2 import numpy as np import torch from torch.autograd import Function from torchvision import models import torch torch.set_printoptions(profile="full") import torchvision from torchvision import transforms,datasets import time import os import numpy as np import pandas as pd from cv2 import cv2 from skimage import io from torch.utils.data import DataLoader,Dataset from PIL import Image import torch.nn as nn import torch.nn.functional as F import torch.backends.cudnn as cudnn from torch.optim import lr_scheduler import datetime class FeatureExtractor(): """ Class for extracting activations and registering gradients from targetted intermediate layers """ def __init__(self, model, target_layers): self.model = model self.target_layers = target_layers self.gradients = [] def save_gradient(self, grad): self.gradients.append(grad) def __call__(self, x): outputs = [] self.gradients = [] for name, module in self.model._modules.items(): x = module(x) if name in self.target_layers: x.register_hook(self.save_gradient) outputs += [x] return outputs, x class ModelOutputs(): """ Class for making a forward pass, and getting: 1. The network output. 2. Activations from intermeddiate targetted layers. 3. Gradients from intermeddiate targetted layers. """ def __init__(self, model, feature_module, target_layers): self.model = model self.feature_module = feature_module self.feature_extractor = FeatureExtractor(self.feature_module, target_layers) def get_gradients(self): return self.feature_extractor.gradients def __call__(self, x): target_activations = [] for name, module in self.model._modules.items(): if module == self.feature_module: target_activations, x = self.feature_extractor(x) elif "avgpool" in name.lower(): x = module(x) x = x.view(x.size(0),-1) else: x = module(x) return target_activations, x def preprocess_image(img): means = [0.485, 0.456, 0.406] stds = [0.229, 0.224, 0.225] preprocessed_img = img.copy()[:, :, ::-1] for i in range(3): preprocessed_img[:, :, i] = preprocessed_img[:, :, i] - means[i] preprocessed_img[:, :, i] = preprocessed_img[:, :, i] / stds[i] preprocessed_img = \ np.ascontiguousarray(np.transpose(preprocessed_img, (2, 0, 1))) preprocessed_img = torch.from_numpy(preprocessed_img) preprocessed_img.unsqueeze_(0) input = preprocessed_img.requires_grad_(True) return input def show_cam_on_image(img, mask): heatmap = cv2.applyColorMap(np.uint8(255 * mask), cv2.COLORMAP_JET) heatmap = np.float32(heatmap) / 255 cam = heatmap + np.float32(img) cam = cam / np.max(cam) cv2.imwrite("cam.jpg", np.uint8(255 * cam)) class GradCam: def __init__(self, model, feature_module, target_layer_names, use_cuda): self.model = model self.feature_module = feature_module self.model.eval() self.cuda = use_cuda if self.cuda: self.model = model.cuda() self.extractor = ModelOutputs(self.model, self.feature_module, target_layer_names) def forward(self, input): return self.model(input) def __call__(self, input, index=None): if self.cuda: features, output = self.extractor(input.cuda()) else: features, output = self.extractor(input) if index == None: index = np.argmax(output.cpu().data.numpy()) one_hot = np.zeros((1, output.size()[-1]), dtype=np.float32) one_hot[0][index] = 1 one_hot = torch.from_numpy(one_hot).requires_grad_(True) if self.cuda: one_hot = torch.sum(one_hot.cuda() * output) else: one_hot = torch.sum(one_hot * output) self.feature_module.zero_grad() self.model.zero_grad() one_hot.backward(retain_graph=True) grads_val = self.extractor.get_gradients()[-1].cpu().data.numpy() target = features[-1] target = target.cpu().data.numpy()[0, :] weights = np.mean(grads_val, axis=(2, 3))[0, :] cam = np.zeros(target.shape[1:], dtype=np.float32) for i, w in enumerate(weights): cam += w * target[i, :, :] cam = np.maximum(cam, 0) cam = cv2.resize(cam, input.shape[2:]) cam = cam - np.min(cam) cam = cam / np.max(cam) return cam class GuidedBackpropReLU(Function): @staticmethod def forward(self, input): positive_mask = (input > 0).type_as(input) output = torch.addcmul(torch.zeros(input.size()).type_as(input), input, positive_mask) self.save_for_backward(input, output) return output @staticmethod def backward(self, grad_output): input, output = self.saved_tensors grad_input = None positive_mask_1 = (input > 0).type_as(grad_output) positive_mask_2 = (grad_output > 0).type_as(grad_output) grad_input = torch.addcmul(torch.zeros(input.size()).type_as(input), torch.addcmul(torch.zeros(input.size()).type_as(input), grad_output, positive_mask_1), positive_mask_2) return grad_input class GuidedBackpropReLUModel: def __init__(self, model, use_cuda): self.model = model self.model.eval() self.cuda = use_cuda if self.cuda: self.model = model.cuda() def recursive_relu_apply(module_top): for idx, module in module_top._modules.items(): recursive_relu_apply(module) if module.__class__.__name__ == 'ReLU': module_top._modules[idx] = GuidedBackpropReLU.apply # replace ReLU with GuidedBackpropReLU recursive_relu_apply(self.model) def forward(self, input): return self.model(input) def __call__(self, input, index=None): if self.cuda: output = self.forward(input.cuda()) else: output = self.forward(input) if index == None: index = np.argmax(output.cpu().data.numpy()) one_hot = np.zeros((1, output.size()[-1]), dtype=np.float32) one_hot[0][index] = 1 one_hot = torch.from_numpy(one_hot).requires_grad_(True) if self.cuda: one_hot = torch.sum(one_hot.cuda() * output) else: one_hot = torch.sum(one_hot * output) # self.model.features.zero_grad() # self.model.classifier.zero_grad() one_hot.backward(retain_graph=True) output = input.grad.cpu().data.numpy() output = output[0, :, :, :] return output def get_args(): parser = argparse.ArgumentParser() parser.add_argument('--use-cuda', action='store_true', default=True, help='Use NVIDIA GPU acceleration') parser.add_argument('--image-path', type=str, default='./S001C001P001R001A001_0_0.jpg', help='Input image path') args = parser.parse_args() args.use_cuda = args.use_cuda and torch.cuda.is_available() if args.use_cuda: print("Using GPU for acceleration") else: print("Using CPU for computation") return args def deprocess_image(img): """ see https://github.com/jacobgil/keras-grad-cam/blob/master/grad-cam.py#L65 """ img = img - np.mean(img) img = img / (np.std(img) + 1e-5) img = img * 0.1 img = img + 0.5 img = np.clip(img, 0, 1) return np.uint8(img*255) class DiffNet(nn.Module): def __init__(self): super(DiffNet,self).__init__() self.base_model = torchvision.models.resnet50(pretrained=True) # self.base_model.aux_logits = False self.flatten = nn.Flatten() self.base_model = nn.Sequential(*list(self.base_model.children())[:-2]) self.avgpooling = nn.AdaptiveAvgPool2d((1,1)) self.fc1 = nn.Linear(2048,1024) self.fc2 = nn.Linear(1024,512) # self.output1 = nn.Linear(512,2) self.output2 = nn.Linear(512,60) self.dropout = nn.Dropout(p=0.5) def forward(self,x): output_feature = self.base_model(x) output_feature = self.avgpooling(output_feature) output_feature = self.flatten(output_feature) # output_feature_reverse = ReverseLayerF.apply(output_feature,0.9) # output_feature_reverse = output_feature # dropout1 = self.dropout(output_feature_reverse) # fc1 = F.relu(self.fc1(dropout1)) # dropout2 = self.dropout(fc1) # fc2 = F.relu(self.fc2(dropout2)) # output1 = self.output1(fc2) # output1 = nn.LogSoftmax(output1)#rota_class dropout3 = self.dropout(output_feature) fc3 = self.fc1(dropout3) dropout4 = self.dropout(fc3) fc4 = self.fc2(dropout4) output2 = self.output2(fc4)#sk_class # output2 = nn.LogSoftmax(output2) return output1,output2,output_feature if __name__ == '__main__': """ python grad_cam.py <path_to_image> 1. Loads an image with opencv. 2. Preprocesses it for VGG19 and converts to a pytorch variable. 3. Makes a forward pass to find the category index with the highest score, and computes intermediate activations. Makes the visualization. """ args = get_args() # Can work with any model, but it assumes that the model has a # feature method, and a classifier method, # as in the VGG models in torchvision. # model = models.resnet50(pretrained=True) model = DiffNet() print(model) grad_cam = GradCam(model=model, feature_module=model.base_model, \ target_layer_names=["4"], use_cuda=args.use_cuda) img = cv2.imread(args.image_path, 1) img = np.float32(cv2.resize(img, (224, 224))) / 255 input = preprocess_image(img) # If None, returns the map for the highest scoring category. # Otherwise, targets the requested index. target_index = None mask = grad_cam(input, target_index) show_cam_on_image(img, mask) gb_model = GuidedBackpropReLUModel(model=model, use_cuda=args.use_cuda) print(model._modules.items()) gb = gb_model(input, index=target_index) gb = gb.transpose((1, 2, 0)) cam_mask = cv2.merge([mask, mask, mask]) cam_gb = deprocess_image(cam_mask*gb) gb = deprocess_image(gb) cv2.imwrite('gb.jpg', gb) cv2.imwrite('cam_gb.jpg', cam_gb)
Note:我是將自己的網絡訓練后保存模型,再加載未預訓練的Resnet50模型,再加載自己主干網絡的參數最后輸出提取的特征,這樣不用改動太多代碼
比較便捷的一點就是若你的模型是單流的,直接把你的模型結構寫上去,然后加載模型參數,設置feature_module和target_layer_name即可,若是多流的,則需要根據自己的實際情況debug,代碼不長,比較好讀(我沒具體改過,應該不難)。還有一個trick是,若只想看主干網絡提取的特征熱圖,Note的方法可以參考一下。
- 結果預覽
待識別分類圖像:
判別網絡概率熱圖:
對抗網絡概率熱圖