Serverless 架構就不要服務器了?


摘要:Serverless 架構不是不要服務器了,而是依托第三方雲服務平台,服務端邏輯運行在無狀態的計算容器中,其業務層面的狀態則被開發者使用的數據庫和存儲資源所記錄。

Serverless 是什么

我們在題目提出了一個問題,Serverless 架構是不是就不要服務器了?回答這個問題,我們需要了解下 Serverless 是什么。

Serverless 架構近幾年頻繁出現在一些技術架構大會的演講標題中,很多人對於 Serverless,只是從字面意義上理解,無服務器架構,但是它真正的含義是開發者再也不用過多考慮服務器的問題,但是並不代表完全去除服務器,而是我們依靠第三方資源服務器后端,從 2014 年開始,經過這么多年的發展,各大雲服務商基本都提供了 Serverless 服務。

架構是如何演進到 Serverless ?

看看過去幾十年間,雲計算領域的發展演進歷程。總的來說,雲計算的發展分為三個階段:虛擬化的出現、虛擬化在雲計算中的應用以及容器化的出現。雲計算的高速發展,則集中在近十幾年。

總結來說有如下的里程碑事件:

  • 通過虛擬化技術將大型物理機虛擬成單個的VM資源。
  • 將虛擬化集群搬到雲計算平台上,只做簡單運維。
  • 把每一個VM按照運行空間最小化的原則切分成更細的Docker容器。
  • 基於Docker容器構建不用管理任何運行環境、僅需編寫核心代碼的Serverless架構。

從裸金屬機器的部署應用,到 Openstack 架構和虛擬機的划分,再到容器化部署,這其中典型的就是近些年 docker 和 Kubernates 的流行,進一步發展為使用一個微服務或微功能來響應一個客戶端的請求 ,這種方式是雲計算發展的自然過程。

這個發展歷程也是一場 IT 架構的演進,期間經歷了一系列代際的技術變革,把資源切分得更細,讓運行效率更高,讓硬件軟件維護更簡單。IT架構的演進主要有以下幾個特點:

  • 硬件資源使用顆粒度變小
  • 資源利用率越來越高
  • 運維工作逐步減少
  • 業務更聚焦在代碼層面

Serverless 架構的組成

Serverless架構分為 Backend as a Service(BaaS) 和 Functions as a Service(FaaS) 兩種技術,Serverless 它是由開發者實現的服務端邏輯運行在無狀態的計算容器中,它是由事件觸發,完全被第三方管理的。

什么是 BaaS?

Baas 的英文翻譯成中文的含義:后端即服務,它的應用架構由大量第三方雲服務器和API組成的,使應用中關於服務器的邏輯和狀態都由服務提供方來管理的。比如我們的典型的單頁應用SPA和移動APP富客戶端應用,前后端交互主要是以RestAPI調用為主。只需要調用服務提供方的API即可完成相應的功能,比如常見的身份驗證,雲端數據/文件存儲,消息推送,應用數據分析等。

什么是 FaaS?

FaaS可以被叫做:函數即服務。開發者可以直接將服務業務邏輯代碼部署,運行在第三方提供的無狀態計算容器中,開發者只需要編寫業務代碼即可,無需關注服務器,並且代碼的執行它是由事件觸發的。

Serverless的應用架構是將 BaaS 和 FaaS 組合在一起的應用,用戶只需要關注應用的業務邏輯代碼,編寫函數為粒度將其運行在FaaS平台上,並且和BaaS第三方服務整合在一起,最后就搭建了一個完整的系統。整個系統過程中完全無需關注服務器。

Serverless 架構的特點

總得來說,Serverless 架構主要有以下特點:

  • 實現了細粒度的計算資源分配。
  • 不需要預先分配資源。
  • 具備真正意義上的高度擴容和彈性。
  • 按需使用,按需計費。

由於 Serverless 應用與服務器的解耦,購買的是雲服務商的資源,使得 Serverless 架構降低了運維的壓力,也無需進行服務器硬件等預估和購買。

Serverless 架構使得開發人員更加專注於業務服務的實現,中間件和硬件服務器資源都托管給了雲服務商。這同時降低了開發成本,按需擴展和計費,無需考慮基礎設施。

Serverless 架構給前端也帶來了便利,大前端深入到業務端的成本降低,開發者只需要關注業務邏輯,前端工程師輕松轉為全棧工程師。

Serverless 有哪些應用場景?

應用場景與 Serverless 架構的特點密切相關,根據 Serverless 的這些通用特點,我們歸納出下面幾種典型使用場景:彈性伸縮、大數據分析、事件觸發等。

彈性伸縮

由於雲函數事件驅動及單事件處理的特性,雲函數通過自動的伸縮來支持業務的高並發。針對業務的實際事件或請求數,雲函數自動彈性合適的處理實例來承載實際業務量。在沒有事件或請求時,無運行實例,不占用資源。如視頻直播服務,直播觀眾不固定,需要考慮適度的並發和彈性。直播不可能 24 小時在線,有較為明顯的業務訪問高峰期和低谷期。直播是事件或者公眾點爆的場景,更新速度較快,版本迭代較快,需要快速完成對新熱點的技術升級。

大數據分析

數據統計本身只需要很少的計算量,離線計算生成圖表。在空閑的時候對數據進行處理,或者不需要考慮任何延時的情況下。

  • 開發者編寫代碼,目前支持的語言Java、NodeJS、Python等語言。
  • 把代碼上傳到函數計算上,上傳的方式有通過 API 或者 SDK 上傳,也可以通過控制台頁面上傳上傳,還可以通過命令行工具Fcli上傳。
  • 通過API&SDK來觸發函數計算執行,同樣也可以通過雲產品的事件源來觸發函數計算執行。
  • 函數計算在執行過程中,會根據用戶請請求量動態擴容函數計算來保證請求峰值的執行,這個過程對用戶是透明無感知的。
  • 函數執行結束。

事件觸發

事件觸發即雲函數由事件驅動,事件的定義可以是指定的 http 請求,或者數據庫的 binlog 日志、消息推送等。通過 Serverless 架構,在控制台上配置事件源通知,編寫業務代碼。業務邏輯添加到到函數計算里,業務高峰期函數計算會動態伸縮,這個過程不需要管理軟硬件環境。常見的場景如視頻、OSS 圖片,當上傳之后,通過進行后續的過濾、轉換和分析,觸發一系列的后續處理,如內容不合法、容量告警等。

小結

回到我們文章的題目,Serverless 架構不是不要服務器了,而是依托第三方雲服務平台,服務端邏輯運行在無狀態的計算容器中,其業務層面的狀態則被開發者使用的數據庫和存儲資源所記錄。

Serverless 無服務器架構有其適合應用的場景,但是也存在局限性。總得來說,Serverless 架構還不夠成熟,很多地方存在不完善。Serverless 依賴雲服務商提供的基礎設施,目前來說雲服務商還做不到真正的平台高可用。Serverless 資源雖然便宜,但是構建一個生產環境的應用系統卻比較復雜。

雲計算還在不斷發展,基礎設施發服務日趨完善,開發者將會更加專注於業務邏輯的實現。雲計算將平台、中間件、運維部署的責任進行了轉移,同時也降低了中小企業上雲的成本。讓我們一起期待 Serverless 架構的未來。

本文分享自華為雲社區《【華為雲專家原創】Serverless 架構就不要服務器了?》,原文作者:aoho。

 

點擊關注,第一時間了解華為雲新鮮技術~


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM