常見緩存問題處理-數據庫和緩存雙寫一致性


參考:

https://www.cnblogs.com/rjzheng/p/9041659.html

https://blog.csdn.net/chang384915878/article/details/86756463

 

 

 

 

【原創】分布式之數據庫和緩存雙寫一致性方案解析

引言

為什么寫這篇文章?

首先,緩存由於其高並發和高性能的特性,已經在項目中被廣泛使用。在讀取緩存方面,大家沒啥疑問,都是按照下圖的流程來進行業務操作。
image
但是在更新緩存方面,對於更新完數據庫,是更新緩存呢,還是刪除緩存。又或者是先刪除緩存,再更新數據庫,其實大家存在很大的爭議。目前沒有一篇全面的博客,對這幾種方案進行解析。於是博主戰戰兢兢,頂着被大家噴的風險,寫了這篇文章。

文章結構

本文由以下三個部分組成
1、講解緩存更新策略
2、對每種策略進行缺點分析
3、針對缺點給出改進方案

正文

先做一個說明,從理論上來說,給緩存設置過期時間,是保證最終一致性的解決方案。這種方案下,我們可以對存入緩存的數據設置過期時間,所有的寫操作以數據庫為准,對緩存操作只是盡最大努力即可。也就是說如果數據庫寫成功,緩存更新失敗,那么只要到達過期時間,則后面的讀請求自然會從數據庫中讀取新值然后回填緩存。因此,接下來討論的思路不依賴於給緩存設置過期時間這個方案。
在這里,我們討論三種更新策略:

  1. 先更新數據庫,再更新緩存
  2. 先刪除緩存,再更新數據庫
  3. 先更新數據庫,再刪除緩存

應該沒人問我,為什么沒有先更新緩存,再更新數據庫這種策略。

(1)先更新數據庫,再更新緩存

這套方案,大家是普遍反對的。為什么呢?有如下兩點原因。
原因一(線程安全角度)
同時有請求A和請求B進行更新操作,那么會出現
(1)線程A更新了數據庫
(2)線程B更新了數據庫
(3)線程B更新了緩存
(4)線程A更新了緩存
這就出現請求A更新緩存應該比請求B更新緩存早才對,但是因為網絡等原因,B卻比A更早更新了緩存。這就導致了臟數據,因此不考慮。
原因二(業務場景角度)
有如下兩點:
(1)如果你是一個寫數據庫場景比較多,而讀數據場景比較少的業務需求,采用這種方案就會導致,數據壓根還沒讀到,緩存就被頻繁的更新,浪費性能。
(2)如果你寫入數據庫的值,並不是直接寫入緩存的,而是要經過一系列復雜的計算再寫入緩存。那么,每次寫入數據庫后,都再次計算寫入緩存的值,無疑是浪費性能的。顯然,刪除緩存更為適合。

接下來討論的就是爭議最大的,先刪緩存,再更新數據庫。還是先更新數據庫,再刪緩存的問題。

(2)先刪緩存,再更新數據庫

該方案會導致不一致的原因是。同時有一個請求A進行更新操作,另一個請求B進行查詢操作。那么會出現如下情形:
(1)請求A進行寫操作,刪除緩存
(2)請求B查詢發現緩存不存在
(3)請求B去數據庫查詢得到舊值
(4)請求B將舊值寫入緩存
(5)請求A將新值寫入數據庫
上述情況就會導致不一致的情形出現。而且,如果不采用給緩存設置過期時間策略,該數據永遠都是臟數據。
那么,如何解決呢?采用延時雙刪策略
偽代碼如下

public void write(String key,Object data){ redis.delKey(key); db.updateData(data); Thread.sleep(1000); redis.delKey(key); } 

轉化為中文描述就是
(1)先淘汰緩存
(2)再寫數據庫(這兩步和原來一樣)
(3)休眠1秒,再次淘汰緩存
這么做,可以將1秒內所造成的緩存臟數據,再次刪除。
那么,這個1秒怎么確定的,具體該休眠多久呢?
針對上面的情形,讀者應該自行評估自己的項目的讀數據業務邏輯的耗時。然后寫數據的休眠時間則在讀數據業務邏輯的耗時基礎上,加幾百ms即可。這么做的目的,就是確保讀請求結束,寫請求可以刪除讀請求造成的緩存臟數據。
如果你用了mysql的讀寫分離架構怎么辦?
ok,在這種情況下,造成數據不一致的原因如下,還是兩個請求,一個請求A進行更新操作,另一個請求B進行查詢操作。
(1)請求A進行寫操作,刪除緩存
(2)請求A將數據寫入數據庫了,
(3)請求B查詢緩存發現,緩存沒有值
(4)請求B去從庫查詢,這時,還沒有完成主從同步,因此查詢到的是舊值
(5)請求B將舊值寫入緩存
(6)數據庫完成主從同步,從庫變為新值
上述情形,就是數據不一致的原因。還是使用雙刪延時策略。只是,睡眠時間修改為在主從同步的延時時間基礎上,加幾百ms。
采用這種同步淘汰策略,吞吐量降低怎么辦?
ok,那就將第二次刪除作為異步的。自己起一個線程,異步刪除。這樣,寫的請求就不用沉睡一段時間后了,再返回。這么做,加大吞吐量。
第二次刪除,如果刪除失敗怎么辦?
這是個非常好的問題,因為第二次刪除失敗,就會出現如下情形。還是有兩個請求,一個請求A進行更新操作,另一個請求B進行查詢操作,為了方便,假設是單庫:
(1)請求A進行寫操作,刪除緩存
(2)請求B查詢發現緩存不存在
(3)請求B去數據庫查詢得到舊值
(4)請求B將舊值寫入緩存
(5)請求A將新值寫入數據庫
(6)請求A試圖去刪除請求B寫入對緩存值,結果失敗了。
ok,這也就是說。如果第二次刪除緩存失敗,會再次出現緩存和數據庫不一致的問題。
如何解決呢?
具體解決方案,且看博主對第(3)種更新策略的解析。

(3)先更新數據庫,再刪緩存

首先,先說一下。老外提出了一個緩存更新套路,名為《Cache-Aside pattern》。其中就指出

  • 失效:應用程序先從cache取數據,沒有得到,則從數據庫中取數據,成功后,放到緩存中。
  • 命中:應用程序從cache中取數據,取到后返回。
  • 更新:先把數據存到數據庫中,成功后,再讓緩存失效。

另外,知名社交網站facebook也在論文《Scaling Memcache at Facebook》中提出,他們用的也是先更新數據庫,再刪緩存的策略。
這種情況不存在並發問題么?
不是的。假設這會有兩個請求,一個請求A做查詢操作,一個請求B做更新操作,那么會有如下情形產生
(1)緩存剛好失效
(2)請求A查詢數據庫,得一個舊值
(3)請求B將新值寫入數據庫
(4)請求B刪除緩存
(5)請求A將查到的舊值寫入緩存
ok,如果發生上述情況,確實是會發生臟數據。
然而,發生這種情況的概率又有多少呢?
發生上述情況有一個先天性條件,就是步驟(3)的寫數據庫操作比步驟(2)的讀數據庫操作耗時更短,才有可能使得步驟(4)先於步驟(5)。可是,大家想想,數據庫的讀操作的速度遠快於寫操作的(不然做讀寫分離干嘛,做讀寫分離的意義就是因為讀操作比較快,耗資源少),因此步驟(3)耗時比步驟(2)更短,這一情形很難出現。
假設,有人非要抬杠,有強迫症,一定要解決怎么辦?
如何解決上述並發問題?
首先,給緩存設有效時間是一種方案。其次,采用策略(2)里給出的異步延時刪除策略,保證讀請求完成以后,再進行刪除操作。
還有其他造成不一致的原因么?
有的,這也是緩存更新策略(2)和緩存更新策略(3)都存在的一個問題,如果刪緩存失敗了怎么辦,那不是會有不一致的情況出現么。比如一個寫數據請求,然后寫入數據庫了,刪緩存失敗了,這會就出現不一致的情況了。這也是緩存更新策略(2)里留下的最后一個疑問。
如何解決
提供一個保障的重試機制即可,這里給出兩套方案。
方案一
如下圖所示
image
流程如下所示
(1)更新數據庫數據;
(2)緩存因為種種問題刪除失敗
(3)將需要刪除的key發送至消息隊列
(4)自己消費消息,獲得需要刪除的key
(5)繼續重試刪除操作,直到成功
然而,該方案有一個缺點,對業務線代碼造成大量的侵入。於是有了方案二,在方案二中,啟動一個訂閱程序去訂閱數據庫的binlog,獲得需要操作的數據。在應用程序中,另起一段程序,獲得這個訂閱程序傳來的信息,進行刪除緩存操作。
方案二
image
流程如下圖所示:
(1)更新數據庫數據
(2)數據庫會將操作信息寫入binlog日志當中
(3)訂閱程序提取出所需要的數據以及key
(4)另起一段非業務代碼,獲得該信息
(5)嘗試刪除緩存操作,發現刪除失敗
(6)將這些信息發送至消息隊列
(7)重新從消息隊列中獲得該數據,重試操作。

備注說明:上述的訂閱binlog程序在mysql中有現成的中間件叫canal,可以完成訂閱binlog日志的功能。至於oracle中,博主目前不知道有沒有現成中間件可以使用。另外,重試機制,博主是采用的是消息隊列的方式。如果對一致性要求不是很高,直接在程序中另起一個線程,每隔一段時間去重試即可,這些大家可以靈活自由發揮,只是提供一個思路。

總結

本文其實是對目前互聯網中已有的一致性方案,進行了一個總結。對於先刪緩存,再更新數據庫的更新策略,還有方案提出維護一個內存隊列的方式,博主看了一下,覺得實現異常復雜,沒有必要,因此沒有必要在文中給出。最后,希望大家有所收獲。

參考文獻

1、主從DB與cache一致性
2、緩存更新的套路

 
 
 
 
 
 
 

如何保證緩存與數據庫的雙寫一致性?

面試題

如何保證緩存與數據庫的雙寫一致性?

面試官心理分析

你只要用緩存,就可能會涉及到緩存與數據庫雙存儲雙寫,你只要是雙寫,就一定會有數據一致性的問題,那么你如何解決一致性問題?

面試題剖析

一般來說,如果允許緩存可以稍微的跟數據庫偶爾有不一致的情況,也就是說如果你的系統不是嚴格要求 “緩存+數據庫” 必須保持一致性的話,最好不要做這個方案,即:讀請求和寫請求串行化,串到一個內存隊列里去。

串行化可以保證一定不會出現不一致的情況,但是它也會導致系統的吞吐量大幅度降低,用比正常情況下多幾倍的機器去支撐線上的一個請求。

Cache Aside Pattern

最經典的緩存+數據庫讀寫的模式,就是 Cache Aside Pattern。

  • 讀的時候,先讀緩存,緩存沒有的話,就讀數據庫,然后取出數據后放入緩存,同時返回響應。
  • 更新的時候,先更新數據庫,然后再刪除緩存。

為什么是刪除緩存,而不是更新緩存?

原因很簡單,很多時候,在復雜點的緩存場景,緩存不單單是數據庫中直接取出來的值。

比如可能更新了某個表的一個字段,然后其對應的緩存,是需要查詢另外兩個表的數據並進行運算,才能計算出緩存最新的值的。

另外更新緩存的代價有時候是很高的。是不是說,每次修改數據庫的時候,都一定要將其對應的緩存更新一份?也許有的場景是這樣,但是對於比較復雜的緩存數據計算的場景,就不是這樣了。如果你頻繁修改一個緩存涉及的多個表,緩存也頻繁更新。但是問題在於,這個緩存到底會不會被頻繁訪問到?

舉個栗子,一個緩存涉及的表的字段,在 1 分鍾內就修改了 20 次,或者是 100 次,那么緩存更新 20 次、100 次;但是這個緩存在 1 分鍾內只被讀取了 1 次,有大量的冷數據。實際上,如果你只是刪除緩存的話,那么在 1 分鍾內,這個緩存不過就重新計算一次而已,開銷大幅度降低。用到緩存才去算緩存。

其實刪除緩存,而不是更新緩存,就是一個 lazy 計算的思想,不要每次都重新做復雜的計算,不管它會不會用到,而是讓它到需要被使用的時候再重新計算。像 mybatis,hibernate,都有懶加載思想。查詢一個部門,部門帶了一個員工的 list,沒有必要說每次查詢部門,都里面的 1000 個員工的數據也同時查出來啊。80% 的情況,查這個部門,就只是要訪問這個部門的信息就可以了。先查部門,同時要訪問里面的員工,那么這個時候只有在你要訪問里面的員工的時候,才會去數據庫里面查詢 1000 個員工。

最初級的緩存不一致問題及解決方案

問題:先修改數據庫,再刪除緩存。如果刪除緩存失敗了,那么會導致數據庫中是新數據,緩存中是舊數據,數據就出現了不一致。

redis-junior-inconsistent

解決思路:先刪除緩存,再修改數據庫。如果數據庫修改失敗了,那么數據庫中是舊數據,緩存中是空的,那么數據不會不一致。因為讀的時候緩存沒有,則讀數據庫中舊數據,然后更新到緩存中。

比較復雜的數據不一致問題分析

數據發生了變更,先刪除了緩存,然后要去修改數據庫,此時還沒修改。一個請求過來,去讀緩存,發現緩存空了,去查詢數據庫,查到了修改前的舊數據,放到了緩存中。隨后數據變更的程序完成了數據庫的修改。完了,數據庫和緩存中的數據不一樣了...

為什么上億流量高並發場景下,緩存會出現這個問題?

只有在對一個數據在並發的進行讀寫的時候,才可能會出現這種問題。其實如果說你的並發量很低的話,特別是讀並發很低,每天訪問量就 1 萬次,那么很少的情況下,會出現剛才描述的那種不一致的場景。但是問題是,如果每天的是上億的流量,每秒並發讀是幾萬,每秒只要有數據更新的請求,就可能會出現上述的數據庫+緩存不一致的情況。

解決方案如下:

更新數據的時候,根據數據的唯一標識,將操作路由之后,發送到一個 jvm 內部隊列中。讀取數據的時候,如果發現數據不在緩存中,那么將重新讀取數據+更新緩存的操作,根據唯一標識路由之后,也發送同一個 jvm 內部隊列中。

一個隊列對應一個工作線程,每個工作線程串行拿到對應的操作,然后一條一條的執行。這樣的話,一個數據變更的操作,先刪除緩存,然后再去更新數據庫,但是還沒完成更新。此時如果一個讀請求過來,讀到了空的緩存,那么可以先將緩存更新的請求發送到隊列中,此時會在隊列中積壓,然后同步等待緩存更新完成。

這里有一個優化點,一個隊列中,其實多個更新緩存請求串在一起是沒意義的,因此可以做過濾,如果發現隊列中已經有一個更新緩存的請求了,那么就不用再放個更新請求操作進去了,直接等待前面的更新操作請求完成即可。

待那個隊列對應的工作線程完成了上一個操作的數據庫的修改之后,才會去執行下一個操作,也就是緩存更新的操作,此時會從數據庫中讀取最新的值,然后寫入緩存中。

如果請求還在等待時間范圍內,不斷輪詢發現可以取到值了,那么就直接返回;如果請求等待的時間超過一定時長,那么這一次直接從數據庫中讀取當前的舊值。

高並發的場景下,該解決方案要注意的問題:

  • 讀請求長時阻塞

由於讀請求進行了非常輕度的異步化,所以一定要注意讀超時的問題,每個讀請求必須在超時時間范圍內返回。

該解決方案,最大的風險點在於說,可能數據更新很頻繁,導致隊列中積壓了大量更新操作在里面,然后讀請求會發生大量的超時,最后導致大量的請求直接走數據庫。務必通過一些模擬真實的測試,看看更新數據的頻率是怎樣的。

另外一點,因為一個隊列中,可能會積壓針對多個數據項的更新操作,因此需要根據自己的業務情況進行測試,可能需要部署多個服務,每個服務分攤一些數據的更新操作。如果一個內存隊列里居然會擠壓 100 個商品的庫存修改操作,每隔庫存修改操作要耗費 10ms 去完成,那么最后一個商品的讀請求,可能等待 10 * 100 = 1000ms = 1s 后,才能得到數據,這個時候就導致讀請求的長時阻塞。

一定要做根據實際業務系統的運行情況,去進行一些壓力測試,和模擬線上環境,去看看最繁忙的時候,內存隊列可能會擠壓多少更新操作,可能會導致最后一個更新操作對應的讀請求,會 hang 多少時間,如果讀請求在 200ms 返回,如果你計算過后,哪怕是最繁忙的時候,積壓 10 個更新操作,最多等待 200ms,那還可以的。

如果一個內存隊列中可能積壓的更新操作特別多,那么你就要加機器,讓每個機器上部署的服務實例處理更少的數據,那么每個內存隊列中積壓的更新操作就會越少。

其實根據之前的項目經驗,一般來說,數據的寫頻率是很低的,因此實際上正常來說,在隊列中積壓的更新操作應該是很少的。像這種針對讀高並發、讀緩存架構的項目,一般來說寫請求是非常少的,每秒的 QPS 能到幾百就不錯了。

我們來實際粗略測算一下。

如果一秒有 500 的寫操作,如果分成 5 個時間片,每 200ms 就 100 個寫操作,放到 20 個內存隊列中,每個內存隊列,可能就積壓 5 個寫操作。每個寫操作性能測試后,一般是在 20ms 左右就完成,那么針對每個內存隊列的數據的讀請求,也就最多 hang 一會兒,200ms 以內肯定能返回了。

經過剛才簡單的測算,我們知道,單機支撐的寫 QPS 在幾百是沒問題的,如果寫 QPS 擴大了 10 倍,那么就擴容機器,擴容 10 倍的機器,每個機器 20 個隊列。

  • 讀請求並發量過高

這里還必須做好壓力測試,確保恰巧碰上上述情況的時候,還有一個風險,就是突然間大量讀請求會在幾十毫秒的延時 hang 在服務上,看服務能不能扛的住,需要多少機器才能扛住最大的極限情況的峰值。

但是因為並不是所有的數據都在同一時間更新,緩存也不會同一時間失效,所以每次可能也就是少數數據的緩存失效了,然后那些數據對應的讀請求過來,並發量應該也不會特別大。

  • 多服務實例部署的請求路由

可能這個服務部署了多個實例,那么必須保證說,執行數據更新操作,以及執行緩存更新操作的請求,都通過 Nginx 服務器路由到相同的服務實例上。

比如說,對同一個商品的讀寫請求,全部路由到同一台機器上。可以自己去做服務間的按照某個請求參數的 hash 路由,也可以用 Nginx 的 hash 路由功能等等。

  • 熱點商品的路由問題,導致請求的傾斜

萬一某個商品的讀寫請求特別高,全部打到相同的機器的相同的隊列里面去了,可能會造成某台機器的壓力過大。就是說,因為只有在商品數據更新的時候才會清空緩存,然后才會導致讀寫並發,所以其實要根據業務系統去看,如果更新頻率不是太高的話,這個問題的影響並不是特別大,但是的確可能某些機器的負載會高一些。

 

 

 

 

 

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM