使用Django,Prometheus,和Kubernetes定制應用指標


編者按

本文強調了應用程序定制指標的重要性,用代碼實例演示了如何設計指標並整合Prometheus到Django項目中,為使用Django構建應用的開發者提供了參考。

為什么自定義指標很重要?

盡管有大量關於這一主題的討論,但應用程序的自定義指標的重要性怎么強調都不為過。和為Django應用收集的核心服務指標(應用和web服務器統計數據、關鍵數據庫和緩存操作指標)不同,自定義指標是業務特有的數據點,其邊界和閾值只有你自己知道,這其實是很有趣的事情。

什么樣的指標才是有用的?考慮下面幾點:

  • 運行一個電子商務網站並追蹤平均訂單數量。突然間訂單的數量不那么平均了。有了可靠的應用指標和監控,你就可以在損失殆盡之前捕獲到Bug。
  • 你正在寫一個爬蟲,它每小時從一個新聞網站抓取最新的文章。突然最近的文章並不新了。可靠的指標和監控可以更早地揭示問題所在。
  • 我認為你已經理解了重點。

設置Django應用程序

除了明顯的依賴(pip install Django)之外,我們還需要為寵物項目(譯者注:demo)添加一些額外的包。繼續並安裝pip install django-prometheus-client。這將為我們提供一個Python的Prometheus客戶端,以及一些有用的Django hook,包括中間件和一個優雅的DB包裝器。接下來,我們將運行Django管理命令來啟動項目,更新我們的設置來使用Prometheus客戶端,並將Prometheus的URL添加到URL配置中。

啟動一個新的項目和應用程序

為了這篇文章,並且切合代理的品牌,我們建立了一個遛狗服務。請注意,它實際上不會做什么事,但足以作為一個教學示例。執行如下命令:

django-admin.py startproject demo
python manage.py startapp walker


#settings.py INSTALLED_APPS = [ ... 'walker', ... ] 

現在,我們來添加一些基本的模型和視圖。簡單起見,我只實現將要驗證的部分。如果想要完整地示例,可以從這個demo應用 獲取源碼。


# walker/models.py from django.db import models from django_prometheus.models import ExportModelOperationsMixin class Walker(ExportModelOperationsMixin('walker'), models.Model): name = models.CharField(max_length=127) email = models.CharField(max_length=127) def __str__(self): return f'{self.name} // {self.email} ({self.id})' class Dog(ExportModelOperationsMixin('dog'), models.Model): SIZE_XS = 'xs' SIZE_SM = 'sm' SIZE_MD = 'md' SIZE_LG = 'lg' SIZE_XL = 'xl' DOG_SIZES = ( (SIZE_XS, 'xsmall'), (SIZE_SM, 'small'), (SIZE_MD, 'medium'), (SIZE_LG, 'large'), (SIZE_XL, 'xlarge'), ) size = models.CharField(max_length=31, choices=DOG_SIZES, default=SIZE_MD) name = models.CharField(max_length=127) age = models.IntegerField() def __str__(self): return f'{self.name} // {self.age}y ({self.size})' class Walk(ExportModelOperationsMixin('walk'), models.Model): dog = models.ForeignKey(Dog, related_name='walks', on_delete=models.CASCADE) walker = models.ForeignKey(Walker, related_name='walks', on_delete=models.CASCADE) distance = models.IntegerField(default=0, help_text='walk distance (in meters)') start_time = models.DateTimeField(null=True, blank=True, default=None) end_time = models.DateTimeField(null=True, blank=True, default=None) @property def is_complete(self): return self.end_time is not None @classmethod def in_progress(cls): """ get the list of `Walk`s currently in progress """ return cls.objects.filter(start_time__isnull=False, end_time__isnull=True) def __str__(self): return f'{self.walker.name} // {self.dog.name} @ {self.start_time} ({self.id})' 
# walker/views.py from django.shortcuts import render, redirect from django.views import View from django.core.exceptions import ObjectDoesNotExist from django.http import HttpResponseNotFound, JsonResponse, HttpResponseBadRequest, Http404 from django.urls import reverse from django.utils.timezone import now from walker import models, forms class WalkDetailsView(View): def get_walk(self, walk_id=None): try: return models.Walk.objects.get(id=walk_id) except ObjectDoesNotExist: raise Http404(f'no walk with ID {walk_id} in progress') class CheckWalkStatusView(WalkDetailsView): def get(self, request, walk_id=None, **kwargs): walk = self.get_walk(walk_id=walk_id) return JsonResponse({'complete': walk.is_complete}) class CompleteWalkView(WalkDetailsView): def get(self, request, walk_id=None, **kwargs): walk = self.get_walk(walk_id=walk_id) return render(request, 'index.html', context={'form': forms.CompleteWalkForm(instance=walk)}) def post(self, request, walk_id=None, **kwargs): try: walk = models.Walk.objects.get(id=walk_id) except ObjectDoesNotExist: return HttpResponseNotFound(content=f'no walk with ID {walk_id} found') if walk.is_complete: return HttpResponseBadRequest(content=f'walk {walk.id} is already complete') form = forms.CompleteWalkForm(data=request.POST, instance=walk) if form.is_valid(): updated_walk = form.save(commit=False) updated_walk.end_time = now() updated_walk.save() return redirect(f'{reverse("walk_start")}?walk={walk.id}') return HttpResponseBadRequest(content=f'form validation failed with errors {form.errors}') class StartWalkView(View): def get(self, request): return render(request, 'index.html', context={'form': forms.StartWalkForm()}) def post(self, request): form = forms.StartWalkForm(data=request.POST) if form.is_valid(): walk = form.save(commit=False) walk.start_time = now() walk.save() return redirect(f'{reverse("walk_start")}?walk={walk.id}') return HttpResponseBadRequest(content=f'form validation failed with errors {form.errors}') 

更新應用設置並添加Prometheus urls

現在我們有了一個Django項目以及相應的設置,可以為 django-prometheus添加需要的配置項了。在 settings.py中添加下面的配置:

INSTALLED_APPS = [ ... 'django_prometheus', ... ] MIDDLEWARE = [ 'django_prometheus.middleware.PrometheusBeforeMiddleware', .... 'django_prometheus.middleware.PrometheusAfterMiddleware', ] # we're assuming a Postgres DB here because, well, that's just the right choice :) DATABASES = { 'default': { 'ENGINE': 'django_prometheus.db.backends.postgresql', 'NAME': os.getenv('DB_NAME'), 'USER': os.getenv('DB_USER'), 'PASSWORD': os.getenv('DB_PASSWORD'), 'HOST': os.getenv('DB_HOST'), 'PORT': os.getenv('DB_PORT', '5432'), }, } 

添加url配置到 urls.py

urlpatterns = [ ... path('', include('django_prometheus.urls')), ] 

現在我們有了一個配置好的基本應用,並為整合做好了准備。


添加Prometheus指標

由於django-prometheus提供了開箱即用功能,我們可以立即追蹤一些基本的模型操作,比如插入和刪除。可以在/metricsendpoint看到這些:

django-prometheus default metricsdjango-prometheus提供的默認指標

讓我們把它變得更有趣點。

添加一個walker/metrics.py文件,定義一些要追蹤的基本指標。

# walker/metrics.py from prometheus_client import Counter, Histogram walks_started = Counter('walks_started', 'number of walks started') walks_completed = Counter('walks_completed', 'number of walks completed') invalid_walks = Counter('invalid_walks', 'number of walks attempted to be started, but invalid') walk_distance = Histogram('walk_distance', 'distribution of distance walked', buckets=[0, 50, 200, 400, 800, 1600, 3200]) 

很簡單,不是嗎?Prometheus文檔很好地解釋了每種指標類型的用途,簡言之,我們使用計數器來表示嚴格隨時間增長的指標,使用直方圖來追蹤包含值分布的指標。下面開始驗證應用的代碼。

# walker/views.py ... from walker import metrics ... class CompleteWalkView(WalkDetailsView): ... def post(self, request, walk_id=None, **kwargs): ... if form.is_valid(): updated_walk = form.save(commit=False) updated_walk.end_time = now() updated_walk.save() metrics.walks_completed.inc() metrics.walk_distance.observe(updated_walk.distance) return redirect(f'{reverse("walk_start")}?walk={walk.id}') return HttpResponseBadRequest(content=f'form validation failed with errors {form.errors}') ... class StartWalkView(View): ... def post(self, request): if form.is_valid(): walk = form.save(commit=False) walk.start_time = now() walk.save() metrics.walks_started.inc() return redirect(f'{reverse("walk_start")}?walk={walk.id}') metrics.invalid_walks.inc() return HttpResponseBadRequest(content=f'form validation failed with errors {form.errors}') 

發送幾個樣例請求,可以看到新指標已經產生了。

custom metrics coming in顯示散步距離和創建散步的指標

prometheus custom metrics定義的指標此時已經可以在prometheus里查找到了

至此,我們已經在代碼中添加了自定義指標,整合了應用以追蹤指標,並驗證了這些指標已在/metrics 上更新並可用。讓我們繼續將儀表化應用部署到Kubernetes集群。

使用Helm部署應用

我只會列出和追蹤、導出指標相關的配置內容,完整的Helm chart部署和服務配置可以在 demo應用中找到。 作為起點,這有一些和導出指標相關的deployment和configmap的配置:

# helm/demo/templates/nginx-conf-configmap.yaml apiVersion: v1 kind: ConfigMap metadata: name: {{ include "demo.fullname" . }}-nginx-conf ... data: demo.conf: | upstream app_server { server 127.0.0.1:8000 fail_timeout=0; } server { listen 80; client_max_body_size 4G; # set the correct host(s) for your site server_name{{ range .Values.ingress.hosts }} {{ . }}{{- end }}; keepalive_timeout 5; root /code/static; location / { # checks for static file, if not found proxy to app try_files $uri @proxy_to_app; } location ^~ /metrics { auth_basic "Metrics"; auth_basic_user_file /etc/nginx/secrets/.htpasswd; proxy_pass http://app_server; } location @proxy_to_app { proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for; proxy_set_header X-Forwarded-Proto $scheme; proxy_set_header Host $http_host; # we don't want nginx trying to do something clever with # redirects, we set the Host: header above already. proxy_redirect off; proxy_pass http://app_server; } } 

# helm/demo/templates/deployment.yaml apiVersion: apps/v1 kind: Deployment ... spec: metadata: labels: app.kubernetes.io/name: {{ include "demo.name" . }} app.kubernetes.io/instance: {{ .Release.Name }} app: {{ include "demo.name" . }} volumes: ... - name: nginx-conf configMap: name: {{ include "demo.fullname" . }}-nginx-conf - name: prometheus-auth secret: secretName: prometheus-basic-auth ... containers: - name: {{ .Chart.Name }}-nginx image: "{{ .Values.nginx.image.repository }}:{{ .Values.nginx.image.tag }}" imagePullPolicy: IfNotPresent volumeMounts: ... - name: nginx-conf mountPath: /etc/nginx/conf.d/ - name: prometheus-auth mountPath: /etc/nginx/secrets/.htpasswd ports: - name: http containerPort: 80 protocol: TCP - name: {{ .Chart.Name }} image: "{{ .Values.image.repository }}:{{ .Values.image.tag }}" imagePullPolicy: {{ .Values.image.pullPolicy }} command: ["gunicorn", "--worker-class", "gthread", "--threads", "3", "--bind", "0.0.0.0:8000", "demo.wsgi:application"] env: {{ include "demo.env" . | nindent 12 }} ports: - name: gunicorn containerPort: 8000 protocol: TCP ... 

沒什么神奇的,只是一些YAML而已。有兩個重點需要強調一下:

  1. 我們通過一個nginx反向代理將/metrics放在了驗證后面,為location塊設置了auth_basic指令集。你可能希望在反向代理之后部署gunicorn ,但這樣做可以獲得保護指標的額外好處。
  2. 我們使用多線程的gunicorn而不是多個worker。雖然可以為Prometheus客戶端啟用多進程模式,但在Kubernetes環境中,安裝會更為復雜。為什么這很重要呢?在一個pod中運行多個worker的風險在於,每個worker將在采集時報告自己的一組指標值。但是,由於服務在Prometheus Kubernetes SD scrape配置中被設置為pod級別 ,這些(潛在的)跳轉值將被錯誤地分類為計數器重置,從而導致測量結果不一致。你並不一定需要遵循上述所有步驟,但重點是:如果你了解的不多,應該從一個單線程+單worker的gunicorn環境開始,或者從一個單worker+多線程環境開始。

使用Helm部署Prometheus

基於Helm的幫助文檔,部署Prometheus非常簡單,不需要額外工作:

helm upgrade --install prometheus stable/prometheus

幾分鍾后,你應該就可以通過 port-forward 進入Prometheus的pod(默認的容器端口是9090)。

為應用配置Prometheus scrape目標

Prometheus Helm chart 有大量的自定義可選項,不過我們只需要設置extraScrapeConfigs。創建一個values.yaml文件。你可以略過這部分直接使用 demo應用 作為參考。文件內容如下:

extraScrapeConfigs: | - job_name: demo scrape_interval: 5s metrics_path: /metrics basic_auth: username: prometheus password: prometheus tls_config: insecure_skip_verify: true kubernetes_sd_configs: - role: endpoints namespaces: names: - default relabel_configs: - source_labels: [__meta_kubernetes_service_label_app] regex: demo action: keep - source_labels: [__meta_kubernetes_endpoint_port_name] regex: http action: keep - source_labels: [__meta_kubernetes_namespace] target_label: namespace - source_labels: [__meta_kubernetes_pod_name] target_label: pod - source_labels: [__meta_kubernetes_service_name] target_label: service - source_labels: [__meta_kubernetes_service_name] target_label: job - target_label: endpoint replacement: http 

創建完成后,就可以通過下面的操作為prometheus deployment更新配置。

helm upgrade --install prometheus -f values.yaml

為驗證所有的步驟都配置正確了,打開瀏覽器輸入 http://localhost:9090/targets (假設你已經通過 port-forward進入了運行prometheus的Pod)。如果你看到demo應用在target的列表中,說明運行正常了。

自己動手試試

我要強調一點:捕獲自定義的應用程序指標並設置相應的報告和監控是軟件工程中最重要的任務之一。幸運的是,將Prometheus指標集成到Django應用程序中實際上非常簡單,正如本文展示的那樣。如果你想要開始監測自己的應用,請參考完整的示例應用程序,或者直接fork代碼庫。祝你玩得開心。


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM