【Mybatis工具(五)】雪花算法


SnowFlake 算法,是 Twitter 開源的分布式 id 生成算法。其核心思想就是:使用一個 64 bit 的 long 型的數字作為全局唯一 id ,在分布式系統中的應用十分廣泛。

給大家舉個例子吧,比如下面這個 64 bit 的 long 型數字,就是由雪花算法生成的id。

  • 第一個部分,是 1 個 bit:0,這個是無意義的。
  • 第二個部分,是 41 個 bit:表示的是時間戳。
  • 第三個部分,是 5 個 bit:表示的是機房 id,10001。
  • 第四個部分,是 5 個 bit:表示的是機器 id,1 1001。
  • 第五個部分,是 12 個 bit:表示的序號,就是某個機房某台機器上這一毫秒內同時生成的 id 的序號,0000 00000000。

①1 bit:是不用的,為啥呢?
因為二進制里第一個 bit 為如果是 1,那么都是負數,但是我們生成的 id 都是正數,所以第一個 bit 統一都是 0。

②41 bit:表示的是時間戳,單位是毫秒。
41 bit 可以表示的數字多達 2^41 - 1,也就是可以標識 2 ^ 41 - 1 個毫秒值,換算成年就是表示 69 年的時間。

③10 bit:記錄工作機器 id,代表的是這個服務最多可以部署在 2^10 台機器上,也就是 1024 台機器。但是 10 bit 里 5 個 bit 代表機房 id,5 個 bit 代表機器 id。意思就是最多代表 2 ^ 5 個機房(32 個機房),每個機房里可以代表 2 ^ 5 個機器(32 台機器),也可以根據自己公司的實際情況確定。

④12 bit:這個是用來記錄同一個毫秒內產生的不同 id。
12 bit 可以代表的最大正整數是 2 ^ 12 - 1 = 4096,也就是說可以用這個 12 bit 代表的數字來區分同一個毫秒內的 4096 個不同的 id。

簡單來說,你的某個服務假設要生成一個全局唯一 id,那么就可以發送一個請求給部署了 SnowFlake 算法的系統,由這個 SnowFlake 算法系統來生成唯一 id。這個 SnowFlake 算法系統首先肯定是知道自己所在的機房和機器的,比如機房 id = 17,機器 id = 12。接着 SnowFlake 算法系統接收到這個請求之后,首先就會用二進制位運算的方式生成一個 64 bit 的 long 型 id,64 個 bit 中的第一個 bit 是無意義的。接着 41 個 bit,就可以用當前時間戳(單位到毫秒),然后接着 5 個 bit 設置上這個機房 id,還有 5 個 bit 設置上機器 id。最后再判斷一下,當前這台機房的這台機器上這一毫秒內,這是第幾個請求,給這次生成 id 的請求累加一個序號,作為最后的 12 個 bit。最終一個 64 個 bit 的 id 就出來了。

這個算法可以保證說,一個機房的一台機器上,在同一毫秒內,生成了一個唯一的 id。可能一個毫秒內會生成多個 id,但是有最后 12 個 bit 的序號來區分開來。下面我們簡單看看這個 SnowFlake 算法的一個代碼實現,這就是個示例,大家如果理解了這個意思之后,以后可以自己嘗試改造這個算法。總之就是用一個 64 bit 的數字中各個 bit 位來設置不同的標志位,區分每一個 id。

public class IdWorker {

    //因為二進制里第一個 bit 為如果是 1,那么都是負數,但是我們生成的 id 都是正數,所以第一個 bit 統一都是 0。

    //機器ID  2進制5位  32位減掉1位 31個
    private long workerId;
    //機房ID 2進制5位  32位減掉1位 31個
    private long datacenterId;
    //代表一毫秒內生成的多個id的最新序號  12位 4096 -1 = 4095 個
    private long sequence;
    //設置一個時間初始值    2^41 - 1   差不多可以用69年
    private long twepoch = 1585644268888L;
    //5位的機器id
    private long workerIdBits = 5L;
    //5位的機房id
    private long datacenterIdBits = 5L;
    //每毫秒內產生的id數 2 的 12次方
    private long sequenceBits = 12L;
    // 這個是二進制運算,就是5 bit最多只能有31個數字,也就是說機器id最多只能是32以內
    private long maxWorkerId = -1L ^ (-1L << workerIdBits);
    // 這個是一個意思,就是5 bit最多只能有31個數字,機房id最多只能是32以內
    private long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);

    private long workerIdShift = sequenceBits;
    private long datacenterIdShift = sequenceBits + workerIdBits;
    private long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;
    private long sequenceMask = -1L ^ (-1L << sequenceBits);
    //記錄產生時間毫秒數,判斷是否是同1毫秒
    private long lastTimestamp = -1L;

    public long getWorkerId(){
        return workerId;
    }
    public long getDatacenterId() {
        return datacenterId;
    }
    public long getTimestamp() {
        return System.currentTimeMillis();
    }



    public IdWorker(long workerId, long datacenterId, long sequence) {

        // 檢查機房id和機器id是否超過31 不能小於0
        if (workerId > maxWorkerId || workerId < 0) {
            throw new IllegalArgumentException(
                    String.format("worker Id can't be greater than %d or less than 0",maxWorkerId));
        }

        if (datacenterId > maxDatacenterId || datacenterId < 0) {

            throw new IllegalArgumentException(
                    String.format("datacenter Id can't be greater than %d or less than 0",maxDatacenterId));
        }
        this.workerId = workerId;
        this.datacenterId = datacenterId;
        this.sequence = sequence;
    }

    // 這個是核心方法,通過調用nextId()方法,讓當前這台機器上的snowflake算法程序生成一個全局唯一的id
    public synchronized long nextId() {
        // 這兒就是獲取當前時間戳,單位是毫秒
        long timestamp = timeGen();
        if (timestamp < lastTimestamp) {

            System.err.printf(
                    "clock is moving backwards. Rejecting requests until %d.", lastTimestamp);
            throw new RuntimeException(
                    String.format("Clock moved backwards. Refusing to generate id for %d milliseconds",
                            lastTimestamp - timestamp));
        }

        // 下面是說假設在同一個毫秒內,又發送了一個請求生成一個id
        // 這個時候就得把seqence序號給遞增1,最多就是4096
        if (lastTimestamp == timestamp) {

            // 這個意思是說一個毫秒內最多只能有4096個數字,無論你傳遞多少進來,
            //這個位運算保證始終就是在4096這個范圍內,避免你自己傳遞個sequence超過了4096這個范圍
            sequence = (sequence + 1) & sequenceMask;
            //當某一毫秒的時間,產生的id數 超過4095,系統會進入等待,直到下一毫秒,系統繼續產生ID
            if (sequence == 0) {
                timestamp = tilNextMillis(lastTimestamp);
            }

        } else {
            sequence = 0;
        }
        // 這兒記錄一下最近一次生成id的時間戳,單位是毫秒
        lastTimestamp = timestamp;
        // 這兒就是最核心的二進制位運算操作,生成一個64bit的id
        // 先將當前時間戳左移,放到41 bit那兒;將機房id左移放到5 bit那兒;將機器id左移放到5 bit那兒;將序號放最后12 bit
        // 最后拼接起來成一個64 bit的二進制數字,轉換成10進制就是個long型
        return ((timestamp - twepoch) << timestampLeftShift) |
                (datacenterId << datacenterIdShift) |
                (workerId << workerIdShift) | sequence;
    }

    /**
     * 當某一毫秒的時間,產生的id數 超過4095,系統會進入等待,直到下一毫秒,系統繼續產生ID
     * @param lastTimestamp
     * @return
     */
    private long tilNextMillis(long lastTimestamp) {

        long timestamp = timeGen();

        while (timestamp <= lastTimestamp) {
            timestamp = timeGen();
        }
        return timestamp;
    }
    //獲取當前時間戳
    private long timeGen(){
        return System.currentTimeMillis();
    }

    /**
     *  main 測試類
     * @param args
     */
    public static void main(String[] args) {
		IdWorker worker = new IdWorker(1,1,1);
		for (int i = 0; i < 22; i++) {
			System.out.println(worker.nextId());
		}
    }
}

SnowFlake算法的優點

(1)高性能高可用:生成時不依賴於數據庫,完全在內存中生成。
(2)容量大:每秒中能生成數百萬的自增ID。
(3)ID自增:存入數據庫中,索引效率高。

SnowFlake算法的缺點:
(1)依賴與系統時間的一致性,如果系統時間被回調,或者改變,可能會造成id沖突或者重復。

實際中我們的機房並沒有那么多,我們可以改進改算法,將10bit的機器id優化,成業務表或者和我們系統相關的業務。


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM