先說一個小知識,助於理解代碼中各個層之間維度是怎么變換的。
卷積函數:一般只用來改變輸入數據的維度,例如3維到16維。
Conv2d()
Conv2d(in_channels:int,out_channels:int,kernel_size:Union[int,tuple],stride=1,padding=o):
"""
:param in_channels: 輸入的維度
:param out_channels: 通過卷積核之后,要輸出的維度
:param kernel_size: 卷積核大小
:param stride: 移動步長
:param padding: 四周添多少個零
"""
一個小例子:
import torch
import torch.nn
# 定義一個16張照片,每個照片3個通道,大小是28*28
x= torch.randn(16,3,32,32)
# 改變照片的維度,從3維升到16維,卷積核大小是5
conv= torch.nn.Conv2d(3,16,kernel_size=5,stride=1,padding=0)
res=conv(x)
print(res.shape)
# torch.Size([16, 16, 28, 28])
# 維度升到16維,因為卷積核大小是5,步長是1,所以照片的大小縮小了,變成28
卷積神經網絡實戰之ResNet18:
下面放一個ResNet18的一個示意圖,
ResNet18主要是在層與層之間,加入了一個短接層,可以每隔k個層,進行一次短接。網絡層的層數不是 越深就越好。
ResNet18就是,如果在原先的基礎上再加上k層,如果有小優化,則保留,如果比原先結果還差,那就利用短接層,直接跳過。
ResNet18的構造如下:
ResNet18(
(conv1): Sequential(
(0): Conv2d(3, 64, kernel_size=(3, 3), stride=(3, 3))
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(blk1): ResBlk(
(conv1): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(extra): Sequential(
(0): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2))
(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(blk2): ResBlk(
(conv1): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(extra): Sequential(
(0): Conv2d(128, 256, kernel_size=(1, 1), stride=(2, 2))
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(blk3): ResBlk(
(conv1): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(extra): Sequential(
(0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2))
(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(blk4): ResBlk(
(conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(extra): Sequential()
)
(outlayer): Linear(in_features=512, out_features=10, bias=True)
)
程序運行前,先啟動visdom,如果沒有配置好visdom環境的,先百度安裝好visdom環境
- 1.使用快捷鍵win+r,在輸入框輸出cmd,然后在命令行窗口里輸入
python -m visdom.server
,啟動visdom
代碼實戰
定義一個名為
resnet.py
的文件,代碼如下
import torch
from torch import nn
from torch.nn import functional as F
# 定義兩個卷積層 + 一個短接層
class ResBlk(nn.Module):
def __init__(self,ch_in,ch_out,stride=1):
super(ResBlk, self).__init__()
# 兩個卷積層
self.conv1=nn.Conv2d(ch_in,ch_out,kernel_size=3,stride=stride,padding=1)
self.bn1=nn.BatchNorm2d(ch_out)
self.conv2=nn.Conv2d(ch_out,ch_out,kernel_size=3,stride=1,padding=1)
self.bn2=nn.BatchNorm2d(ch_out)
# 短接層
self.extra=nn.Sequential()
if ch_out != ch_in:
self.extra=nn.Sequential(
nn.Conv2d(ch_in,ch_out,kernel_size=1,stride=stride),
nn.BatchNorm2d(ch_out)
)
def forward(self,x):
"""
:param x: [b,ch,h,w]
:return:
"""
out=F.relu(self.bn1(self.conv1(x)))
out=self.bn2(self.conv2(out))
# 短接層
# element-wise add: [b,ch_in,h,w]=>[b,ch_out,h,w]
out=self.extra(x)+out
return out
class ResNet18(nn.Module):
def __init__(self):
super(ResNet18, self).__init__()
# 定義預處理層
self.conv1=nn.Sequential(
nn.Conv2d(3,64,kernel_size=3,stride=3,padding=0),
nn.BatchNorm2d(64)
)
# 定義堆疊ResBlock層
# followed 4 blocks
# [b,64,h,w]-->[b,128,h,w]
self.blk1=ResBlk(64,128,stride=2)
# [b,128,h,w]-->[b,256,h,w]
self.blk2=ResBlk(128,256,stride=2)
# [b,256,h,w]-->[b,512,h,w]
self.blk3=ResBlk(256,512,stride=2)
# [b,512,h,w]-->[b,512,h,w]
self.blk4=ResBlk(512,512,stride=2)
# 定義全連接層
self.outlayer=nn.Linear(512,10)
def forward(self,x):
"""
:param x:
:return:
"""
# 1.預處理層
x=F.relu(self.conv1(x))
# 2. 堆疊ResBlock層:channel會慢慢的增加, 長和寬會慢慢的減少
# [b,64,h,w]-->[b,512,h,w]
x=self.blk1(x)
x=self.blk2(x)
x=self.blk3(x)
x=self.blk4(x)
# print("after conv:",x.shape) # [b,512,2,2]
# 不管原先什么后面兩個維度是多少,都化成[1,1],
# [b,512,1,1]
x=F.adaptive_avg_pool2d(x,[1,1])
# print("after pool2d:",x.shape) # [b,512,1,1]
# 將[b,512,1,1]打平成[b,512*1*1]
x=x.view(x.size(0),-1)
# 3.放到全連接層,進行打平
# [b,512]-->[b,10]
x=self.outlayer(x)
return x
def main():
blk=ResBlk(64,128,stride=2)
temp=torch.randn(2,64,32,32)
out=blk(temp)
# print('block:',out.shape)
x=torch.randn(2,3,32,32)
model=ResNet()
out=model(x)
# print("resnet:",out.shape)
if __name__ == '__main__':
main()
定義一個名為
main.py
的文件,代碼如下
import torch
from torchvision import datasets
from torchvision import transforms
from torch.utils.data import DataLoader
from torch import nn,optim
from visdom import Visdom
# from lenet5 import Lenet5
from resnet import ResNet18
import time
def main():
batch_siz=32
cifar_train = datasets.CIFAR10('cifar',True,transform=transforms.Compose([
transforms.Resize((32,32)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
]),download=True)
cifar_train=DataLoader(cifar_train,batch_size=batch_siz,shuffle=True)
cifar_test = datasets.CIFAR10('cifar',False,transform=transforms.Compose([
transforms.Resize((32,32)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
]),download=True)
cifar_test=DataLoader(cifar_test,batch_size=batch_siz,shuffle=True)
x,label = iter(cifar_train).next()
print('x:',x.shape,'label:',label.shape)
# 指定運行到cpu //GPU
device=torch.device('cpu')
# model = Lenet5().to(device)
model = ResNet18().to(device)
# 調用損失函數use Cross Entropy loss交叉熵
# 分類問題使用CrossEntropyLoss比MSELoss更合適
criteon = nn.CrossEntropyLoss().to(device)
# 定義一個優化器
optimizer=optim.Adam(model.parameters(),lr=1e-3)
print(model)
viz=Visdom()
viz.line([0.],[0.],win="loss",opts=dict(title='Lenet5 Loss'))
viz.line([0.],[0.],win="acc",opts=dict(title='Lenet5 Acc'))
# 訓練train
for epoch in range(1000):
# 變成train模式
model.train()
# barchidx:下標,x:[b,3,32,32],label:[b]
str_time=time.time()
for barchidx,(x,label) in enumerate(cifar_train):
# 將x,label放在gpu上
x,label=x.to(device),label.to(device)
# logits:[b,10]
# label:[b]
logits = model(x)
loss = criteon(logits,label)
# viz.line([loss.item()],[barchidx],win='loss',update='append')
# backprop
optimizer.zero_grad()
loss.backward()
optimizer.step()
# print(barchidx)
end_time=time.time()
print('第 {} 次訓練用時: {}'.format(epoch,(end_time-str_time)))
viz.line([loss.item()],[epoch],win='loss',update='append')
print(epoch,'loss:',loss.item())
# 變成測試模式
model.eval()
with torch.no_grad():
# 測試test
# 正確的數目
total_correct=0
total_num=0
for x,label in cifar_test:
# 將x,label放在gpu上
x,label=x.to(device),label.to(device)
# [b,10]
logits=model(x)
# [b]
pred=logits.argmax(dim=1)
# [b] = [b'] 統計相等個數
total_correct+=pred.eq(label).float().sum().item()
total_num+=x.size(0)
acc=total_correct/total_num
print(epoch,'acc:',acc)
print("------------------------------")
viz.line([acc],[epoch],win='acc',update='append')
# viz.images(x.view(-1, 3, 32, 32), win='x')
if __name__ == '__main__':
main()
測試結果
ResNet跑起來太費勁了,需要用GPU跑,但是我的電腦不支持GPU,頭都大了,用cpu跑二十多分鍾學習一次,頭都大了。