筆記:pytorch Conv2d 的寬高公式理解,pytorch 使用自己的數據集並且加載訓練
一、pypi 鏡像使用幫助
pypi 鏡像每 5 分鍾同步一次。
臨時使用
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple some-package
注意,simple 不能少, 是 https 而不是 http
設為默認
修改 ~/.config/pip/pip.conf (Linux), %APPDATA%\pip\pip.ini (Windows 10) 或 $HOME/Library/Application Support/pip/pip.conf (macOS) (沒有就創建一個), 修改 index-url至tuna,例如
[global]
index-url = https://pypi.tuna.tsinghua.edu.cn/simple
pip 和 pip3 並存時,只需修改 ~/.pip/pip.conf。
二、pytorch Conv2d 的寬高公式理解
三、pytorch 使用自己的數據集並且加載訓練
import os
import sys
import numpy as np
import cv2
import torch
import torch.nn as nn
import torchvision.transforms as transforms
from torch.utils.data import DataLoader, Dataset
import time
import random
import csv
from PIL import Image
def createImgIndex(dataPath, ratio):
'''
讀取目錄下面的圖片制作包含圖片信息、圖片label的train.txt和val.txt
dataPath: 圖片目錄路徑
ratio: val占比
return:label列表
'''
fileList = os.listdir(dataPath)
random.shuffle(fileList)
classList = [] # label列表
# val 數據集制作
with open('data/val_section1015.csv', 'w') as f:
writer = csv.writer(f)
for i in range(int(len(fileList)*ratio)):
row = []
if '.jpg' in fileList[i]:
fileInfo = fileList[i].split('_')
sectionName = fileInfo[0] + '_' + fileInfo[1] # 切面名+標准與否
row.append(os.path.join(dataPath, fileList[i])) # 圖片路徑
if sectionName not in classList:
classList.append(sectionName)
row.append(classList.index(sectionName))
writer.writerow(row)
f.close()
# train 數據集制作
with open('data/train_section1015.csv', 'w') as f:
writer = csv.writer(f)
for i in range(int(len(fileList) * ratio)+1, len(fileList)):
row = []
if '.jpg' in fileList[i]:
fileInfo = fileList[i].split('_')
sectionName = fileInfo[0] + '_' + fileInfo[1] # 切面名+標准與否
row.append(os.path.join(dataPath, fileList[i])) # 圖片路徑
if sectionName not in classList:
classList.append(sectionName)
row.append(classList.index(sectionName))
writer.writerow(row)
f.close()
print(classList, len(classList))
return classList
def default_loader(path):
'''定義讀取文件的格式'''
return Image.open(path).resize((128, 128),Image.ANTIALIAS).convert('RGB')
class MyDataset(Dataset):
'''Dataset類是讀入數據集數據並且對讀入的數據進行索引'''
def __init__(self, txt, transform=None, target_transform=None, loader=default_loader):
super(MyDataset, self).__init__() #對繼承自父類的屬性進行初始化
fh = open(txt, 'r') #按照傳入的路徑和txt文本參數,以只讀的方式打開這個文本
reader = csv.reader(fh)
imgs = []
for row in reader:
imgs.append((row[0], int(row[1]))) # (圖片信息,lable)
self.imgs = imgs
self.transform = transform
self.target_transform = target_transform
self.loader = loader
def __getitem__(self, index):
'''用於按照索引讀取每個元素的具體內容'''
# fn是圖片path #fn和label分別獲得imgs[index]也即是剛才每行中row[0]和row[1]的信息
fn, label = self.imgs[index]
img = self.loader(fn)
if self.transform is not None:
img = self.transform(img) #數據標簽轉換為Tensor
return img, label
def __len__(self):
'''返回數據集的長度'''
return len(self.imgs)
class Model(nn.Module):
def __init__(self, classNum=31):
super(Model, self).__init__()
# torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding)
# torch.nn.MaxPool2d(kernel_size, stride, padding)
# input 維度 [3, 128, 128]
self.cnn = nn.Sequential(
nn.Conv2d(3, 64, 3, 1, 1), # [64, 128, 128]
nn.BatchNorm2d(64),
nn.ReLU(),
nn.MaxPool2d(2, 2, 0), # [64, 64, 64]
nn.Conv2d(64, 128, 3, 1, 1), # [128, 64, 64]
nn.BatchNorm2d(128),
nn.ReLU(),
nn.MaxPool2d(2, 2, 0), # [128, 32, 32]
nn.Conv2d(128, 256, 3, 1, 1), # [256, 32, 32]
nn.BatchNorm2d(256),
nn.ReLU(),
nn.MaxPool2d(2, 2, 0), # [256, 16, 16]
nn.Conv2d(256, 512, 3, 1, 1), # [512, 16, 16]
nn.BatchNorm2d(512),
nn.ReLU(),
nn.MaxPool2d(2, 2, 0), # [512, 8, 8]
nn.Conv2d(512, 512, 3, 1, 1), # [512, 8, 8]
nn.BatchNorm2d(512),
nn.ReLU(),
nn.MaxPool2d(2, 2, 0), # [512, 4, 4]
)
self.fc = nn.Sequential(
nn.Linear(512 * 4 * 4, 1024),
nn.ReLU(),
nn.Linear(1024, 512),
nn.ReLU(),
nn.Linear(512, classNum)
)
def forward(self, x):
out = self.cnn(x)
out = out.view(out.size()[0], -1)
return self.fc(out)
def train(train_set, train_loader, val_set, val_loader):
model = Model()
loss = nn.CrossEntropyLoss() # 因為是分類任務,所以loss function使用 CrossEntropyLoss
optimizer = torch.optim.Adam(model.parameters(), lr=0.001) # optimizer 使用 Adam
num_epoch = 10
# 開始訓練
for epoch in range(num_epoch):
epoch_start_time = time.time()
train_acc = 0.0
train_loss = 0.0
val_acc = 0.0
val_loss = 0.0
model.train() # train model會開放Dropout和BN
for i, data in enumerate(train_loader):
optimizer.zero_grad() # 用 optimizer 將 model 參數的 gradient 歸零
train_pred = model(data[0]) # 利用 model 的 forward 函數返回預測結果
batch_loss = loss(train_pred, data[1]) # 計算 loss
batch_loss.backward() # tensor(item, grad_fn=<NllLossBackward>)
optimizer.step() # 以 optimizer 用 gradient 更新參數
train_acc += np.sum(np.argmax(train_pred.data.numpy(), axis=1) == data[1].numpy())
train_loss += batch_loss.item()
model.eval()
with torch.no_grad(): # 不跟蹤梯度
for i, data in enumerate(val_loader):
# data = [imgData, labelList]
val_pred = model(data[0])
batch_loss = loss(val_pred, data[1])
val_acc += np.sum(np.argmax(val_pred.data.numpy(), axis=1) == data[1].numpy())
val_loss += batch_loss.item()
# 打印結果
print('[%03d/%03d] %2.2f sec(s) Train Acc: %3.6f Loss: %3.6f | Val Acc: %3.6f loss: %3.6f' % \
(epoch + 1, num_epoch, time.time() - epoch_start_time, \
train_acc / train_set.__len__(), train_loss / train_set.__len__(), val_acc / val_set.__len__(),
val_loss / val_set.__len__()))
if __name__ == '__main__':
dirPath = '/data/Matt/QC_images/test0916' # 圖片文件目錄
createImgIndex(dirPath, 0.2) # 創建train.txt, val.txt
root = os.getcwd() + '/data/'
train_data = MyDataset(txt=root+'train_section1015.csv', transform=transforms.ToTensor())
val_data = MyDataset(txt=root+'val_section1015.csv', transform=transforms.ToTensor())
train_loader = DataLoader(dataset=train_data, batch_size=6, shuffle=True, num_workers = 4)
val_loader = DataLoader(dataset=val_data, batch_size=6, shuffle=False, num_workers = 4)
# 開始訓練模型
train(train_data, train_loader, val_data, val_loader)
三、參考目錄
[https://blog.csdn.net/liangjiu2009/article/details/106549926]:
[https://blog.csdn.net/sinat_42239797/article/details/90641659]: