ThingsBoard 二次開發之源碼分析 5-如何接收 MQTT 連接


thingsboard聚集地

Thingsboard 話題討論區:https://forum.iotschool.com/topics/node8

歡迎大家加入thingsboard 二次開發討論群:121202538

thingsboard交流QQ群 121202538

ThingsBoard源碼分析5-如何接收MQTT連接

1. MQTT server

需要接收設備的MQTT連接,那么thingsboard中必然有MQTT服務器,MQTT服務器創建的類是MqttTransportService

基於netty的mqtt server,添加了MqttTransportServerInitializer的處理類,並向ChannelPipeline添加了netty的MqttDecoderMqttEncoder讓我們可以忽略MQTT消息的編解碼工作,重要的是添加了MqttTransportHandler

2. MqttTransportHandler處理連接

此例中,我們首先需要創建租戶,租戶管理員,並添加設備,使用MQTT Box模擬硬件設備,拷貝ACCESS TOKEN做為MQTT Box的Username開始連接我們的thingsboard后台

mqtt消息處理流程

如果圖片看不清楚,請點擊:

由於沒有使用ssl,收到連接請求以后,便會調用

private void processAuthTokenConnect(ChannelHandlerContext ctx, MqttConnectMessage msg) {
    String userName = msg.payload().userName();
    log.info("[{}] Processing connect msg for client with user name: {}!", sessionId, userName);
    if (StringUtils.isEmpty(userName)) {
        ctx.writeAndFlush(createMqttConnAckMsg(CONNECTION_REFUSED_BAD_USER_NAME_OR_PASSWORD));
        ctx.close();
    } else {
        //取出userName,構造protobuf的類(方便傳輸與解析),交給transportService處理。此時會使用到源碼解析第三篇DefaultTransportService的解析的相關信息了解process的處理。參閱下方①的詳細解析。
        transportService.process(ValidateDeviceTokenRequestMsg.newBuilder().setToken(userName).build(),
                new TransportServiceCallback<ValidateDeviceCredentialsResponseMsg>() {
                    @Override
                    public void onSuccess(ValidateDeviceCredentialsResponseMsg msg) {
                        onValidateDeviceResponse(msg, ctx);
                    }

                    @Override
                    public void onError(Throwable e) {
                        log.trace("[{}] Failed to process credentials: {}", address, userName, e);
                        ctx.writeAndFlush(createMqttConnAckMsg(MqttConnectReturnCode.CONNECTION_REFUSED_SERVER_UNAVAILABLE));
                        ctx.close();
                    }
                });
    }
}
  1. DefaultTransportServiceprocess方法構造了異步任務,成功調用onSuccessConsumer,失敗調用onFailureConsumer

  2. 將驗證用戶的任務交由transportApiRequestTemplate.send

public ListenableFuture<Response> send(Request request) {
    if (tickSize > maxPendingRequests) {
        return Futures.immediateFailedFuture(new RuntimeException("Pending request map is full!"));
    }
    UUID requestId = UUID.randomUUID();
    request.getHeaders().put(REQUEST_ID_HEADER, uuidToBytes(requestId));
    //由第三篇文章的分析得出,此topic時tb_transport.api.responses.localHostName
    request.getHeaders().put(RESPONSE_TOPIC_HEADER, stringToBytes(responseTemplate.getTopic()));
    request.getHeaders().put(REQUEST_TIME, longToBytes(System.currentTimeMillis()));
    //參閱第一篇基礎知識的介紹,來自谷歌的庫,settableFuture,可設置結果的完成
    SettableFuture<Response> future = SettableFuture.create();
    ResponseMetaData<Response> responseMetaData = new ResponseMetaData<>(tickTs + maxRequestTimeout, future);
    //將future放到pendingRequests中②
    pendingRequests.putIfAbsent(requestId, responseMetaData);
    log.trace("[{}] Sending request, key [{}], expTime [{}]", requestId, request.getKey(), responseMetaData.expTime);
    //將消息發送給消息隊列topic是tb_transport.api.requests
    requestTemplate.send(TopicPartitionInfo.builder().topic(requestTemplate.getDefaultTopic()).build(), request, new TbQueueCallback() {
        @Override
        public void onSuccess(TbQueueMsgMetadata metadata) {
            log.trace("[{}] Request sent: {}", requestId, metadata);
        }

        @Override
        public void onFailure(Throwable t) {
            pendingRequests.remove(requestId);
            future.setException(t);
        }
    });
    return future;
}
  1. 根據第三篇TbCoreTransportApiService的分析,我們發現DefaultTbQueueResponseTemplate的成員變量requestTemplateconsumer剛好是訂閱的tb_transport.api.requests的消息:
......
requests.forEach(request -> {
    long currentTime = System.currentTimeMillis();
    long requestTime = bytesToLong(request.getHeaders().get(REQUEST_TIME));
    if (requestTime + requestTimeout >= currentTime) {
        byte[] requestIdHeader = request.getHeaders().get(REQUEST_ID_HEADER);
        if (requestIdHeader == null) {
            log.error("[{}] Missing requestId in header", request);
            return;
        }
       	//獲取response的topic,可以做到消息從哪來,處理好以后回哪里去,此時的topic是tb_transport.api.responses.localHostName
        byte[] responseTopicHeader = request.getHeaders().get(RESPONSE_TOPIC_HEADER);
        if (responseTopicHeader == null) {
            log.error("[{}] Missing response topic in header", request);
            return;
        }
        UUID requestId = bytesToUuid(requestIdHeader);
        String responseTopic = bytesToString(responseTopicHeader);
        try {
            pendingRequestCount.getAndIncrement();
            //調用handler進行處理消息
            AsyncCallbackTemplate.withCallbackAndTimeout(handler.handle(request),
                    response -> {
                        pendingRequestCount.decrementAndGet();
                        response.getHeaders().put(REQUEST_ID_HEADER, uuidToBytes(requestId));
                        //handler.hande處理的結果返回給發送方topic是tb_transport.api.responses.localHostName
                        responseTemplate.send(TopicPartitionInfo.builder().topic(responseTopic).build(), response, null);
                    },
                    e -> {
                        pendingRequestCount.decrementAndGet();
                        if (e.getCause() != null && e.getCause() instanceof TimeoutException) {
                            log.warn("[{}] Timeout to process the request: {}", requestId, request, e);
                        } else {
                            log.trace("[{}] Failed to process the request: {}", requestId, request, e);
                        }
                    },
                    requestTimeout,
                    timeoutExecutor,
                    callbackExecutor);
          .......
  1. 具體驗證邏輯:
@Override
public ListenableFuture<TbProtoQueueMsg<TransportApiResponseMsg>> handle(TbProtoQueueMsg<TransportApiRequestMsg> tbProtoQueueMsg) {
    TransportApiRequestMsg transportApiRequestMsg = tbProtoQueueMsg.getValue();
    // protobuf構造的類中判定是否包含需要驗證的信息塊
    if (transportApiRequestMsg.hasValidateTokenRequestMsg()) {
        ValidateDeviceTokenRequestMsg msg = transportApiRequestMsg.getValidateTokenRequestMsg();
        //調用validateCredentials,具體內容就是查詢deviceInfo,並將結果交由第二個Function進行進一步處理
        return Futures.transform(validateCredentials(msg.getToken(), DeviceCredentialsType.ACCESS_TOKEN), value -> new TbProtoQueueMsg<>(tbProtoQueueMsg.getKey(), value, tbProtoQueueMsg.getHeaders()), MoreExecutors.directExecutor());
    } 
  ......
  1. 當通過設備的acess token找到了deviceInfo,便會通過消息中間件將DeviceInfo發出來,topic是tb_transport.api.responses.localHostName,在第三篇的分析中,DefaultTransportServicetransportApiRequestTemplate即訂閱此topic:
List<Response> responses = responseTemplate.poll(pollInterval);
if (responses.size() > 0) {
    log.trace("Polling responses completed, consumer records count [{}]", responses.size());
} else {
    continue;
}
responses.forEach(response -> {
    byte[] requestIdHeader = response.getHeaders().get(REQUEST_ID_HEADER);
    UUID requestId;
    if (requestIdHeader == null) {
        log.error("[{}] Missing requestId in header and body", response);
    } else {
        requestId = bytesToUuid(requestIdHeader);
        log.trace("[{}] Response received: {}", requestId, response);
        //參見上②,將驗證的future放入到pendingRequests中,現在通過設置的requestId取出來
        ResponseMetaData<Response> expectedResponse = pendingRequests.remove(requestId);
        if (expectedResponse == null) {
            log.trace("[{}] Invalid or stale request", requestId);
        } else {
            //設置settableFuture的結果
            expectedResponse.future.set(response);
        }
    }
......
  1. DefaultTransportServiceprocess異步請求獲得了返回的結果,此時調用onSuccess回調,即調用MqttTransportHandleronValidateDeviceResponse
private void onValidateDeviceResponse(ValidateDeviceCredentialsResponseMsg msg, ChannelHandlerContext ctx) {
    if (!msg.hasDeviceInfo()) {
        ctx.writeAndFlush(createMqttConnAckMsg(CONNECTION_REFUSED_NOT_AUTHORIZED));
        ctx.close();
    } else {
        deviceSessionCtx.setDeviceInfo(msg.getDeviceInfo());
        sessionInfo = SessionInfoProto.newBuilder()
                .setNodeId(context.getNodeId())
                .setSessionIdMSB(sessionId.getMostSignificantBits())
                .setSessionIdLSB(sessionId.getLeastSignificantBits())
                .setDeviceIdMSB(msg.getDeviceInfo().getDeviceIdMSB())
                .setDeviceIdLSB(msg.getDeviceInfo().getDeviceIdLSB())
                .setTenantIdMSB(msg.getDeviceInfo().getTenantIdMSB())
                .setTenantIdLSB(msg.getDeviceInfo().getTenantIdLSB())
                .setDeviceName(msg.getDeviceInfo().getDeviceName())
                .setDeviceType(msg.getDeviceInfo().getDeviceType())
                .build();
        //創建SessionEvent.OPEN的消息,調用sendToDeviceActor方法,包含sessionInfo
        transportService.process(sessionInfo, DefaultTransportService.getSessionEventMsg(SessionEvent.OPEN), new TransportServiceCallback<Void>() {
           .......
  1. sendToDeviceActor的實現:
protected void sendToDeviceActor(TransportProtos.SessionInfoProto sessionInfo, TransportToDeviceActorMsg toDeviceActorMsg, TransportServiceCallback<Void> callback) {
    //創建tpi,此時會選擇一個固定的partition Id,組成的topic是tb_core, fullTopicName是tb_core.(int) 如: tb_core.1
    TopicPartitionInfo tpi = partitionService.resolve(ServiceType.TB_CORE, getTenantId(sessionInfo), getDeviceId(sessionInfo));
......
    //使用tbCoreMsgProducer發送到消息隊列,設置了toDeviceActorMsg
    tbCoreMsgProducer.send(tpi,
            new TbProtoQueueMsg<>(getRoutingKey(sessionInfo),
                    ToCoreMsg.newBuilder().setToDeviceActorMsg(toDeviceActorMsg).build()), callback != null ?
                    new TransportTbQueueCallback(callback) : null);
}
  1. 此時第二篇基於DefaultTbCoreConsumerService可以知道DefaultTbCoreConsumerService 的消費者訂閱該主題的消息:
try {
    ToCoreMsg toCoreMsg = msg.getValue();
    if (toCoreMsg.hasToSubscriptionMgrMsg()) {
        log.trace("[{}] Forwarding message to subscription manager service {}", id, toCoreMsg.getToSubscriptionMgrMsg());
        forwardToSubMgrService(toCoreMsg.getToSubscriptionMgrMsg(), callback);
    } else if (toCoreMsg.hasToDeviceActorMsg()) {
        log.trace("[{}] Forwarding message to device actor {}", id, toCoreMsg.getToDeviceActorMsg());
        //交由此方法進行處理
        forwardToDeviceActor(toCoreMsg.getToDeviceActorMsg(), callback);
    }
  1. forwardToDeviceActor對消息的處理

    private void forwardToDeviceActor(TransportToDeviceActorMsg toDeviceActorMsg, TbCallback callback) {
        if (statsEnabled) {
            stats.log(toDeviceActorMsg);
        }
        //創建type為TRANSPORT_TO_DEVICE_ACTOR_MSG的消息,並交給AppActor處理
        actorContext.tell(new TransportToDeviceActorMsgWrapper(toDeviceActorMsg, callback));
    }
    
  2. 通過第四篇的總結3,我們可以直接去看AppActordoProcess方法對此類型消息的處理,跟蹤發現AppActor將消息轉給了TenantActor, TenantActor創建了DeviceActor,並將消息轉給了DeviceActor;

  3. DeviceActor拿到此類型的消息,進行了如下的處理:

    protected boolean doProcess(TbActorMsg msg) {
        switch (msg.getMsgType()) {
            case TRANSPORT_TO_DEVICE_ACTOR_MSG:
                //包裝成TransportToDeviceActorMsgWrapper交由processor處理,並繼續調用processSessionStateMsgs
                processor.process(ctx, (TransportToDeviceActorMsgWrapper) msg);
                break;
            case DEVICE_ATTRIBUTES_UPDATE_TO_DEVICE_ACTOR_MSG:
    
  4. processSessionStateMsgs的處理:

    private void processSessionStateMsgs(SessionInfoProto sessionInfo, SessionEventMsg msg) {
        UUID sessionId = getSessionId(sessionInfo);
        if (msg.getEvent() == SessionEvent.OPEN) {
         .....
            sessions.put(sessionId, new SessionInfoMetaData(new SessionInfo(SessionType.ASYNC, sessionInfo.getNodeId())));
            if (sessions.size() == 1) {
               // 將調用pushRuleEngineMessage(stateData, CONNECT_EVENT);
                reportSessionOpen();
            }
            //將調用pushRuleEngineMessage(stateData, ACTIVITY_EVENT);
            systemContext.getDeviceStateService().onDeviceActivity(deviceId, System.currentTimeMillis());
            dumpSessions();
        }
    ....
    
  5. 由於CONNECT_EVENTACTIVITY_EVENT僅僅類型不同,以下暫時只分析CONNECT_EVENT

    public void pushMsgToRuleEngine(TenantId tenantId, EntityId entityId, TbMsg tbMsg, TbQueueCallback callback) {
        if (tenantId.isNullUid()) {
            if (entityId.getEntityType().equals(EntityType.TENANT)) {
                tenantId = new TenantId(entityId.getId());
            } else {
                log.warn("[{}][{}] Received invalid message: {}", tenantId, entityId, tbMsg);
                return;
            }
        }
        //和第7點類似,創建的tpi的fullTopicName的例子 tb_rule_engine.main.1
        TopicPartitionInfo tpi = partitionService.resolve(ServiceType.TB_RULE_ENGINE, tenantId, entityId);
        log.trace("PUSHING msg: {} to:{}", tbMsg, tpi);
        ToRuleEngineMsg msg = ToRuleEngineMsg.newBuilder()
                .setTenantIdMSB(tenantId.getId().getMostSignificantBits())
                .setTenantIdLSB(tenantId.getId().getLeastSignificantBits())
                .setTbMsg(TbMsg.toByteString(tbMsg)).build();
        producerProvider.getRuleEngineMsgProducer().send(tpi, new TbProtoQueueMsg<>(tbMsg.getId(), msg), callback);
        toRuleEngineMsgs.incrementAndGet();
    }
    
  6. 通過第二篇的分析DefaultTbRuleEngineConsumerService訂閱了此topic: tb_rule_engine.main.1的消息,收到消息以后,調用forwardToRuleEngineActor方法,包裹成QUEUE_TO_RULE_ENGINE_MSG類型的消息,交由AppActor進行分發處理;

  7. AppActor交給TenantActor處理,TenantActor交給RootRuleChain處理,RuleChainActor交給firstRuleNode處理,也就是某一個RuleNodeActor;

  8. 打開前端RULE CHAINS的界面,會發現,MESSAGE TYPE SWITCH是接收input的第一個節點,其實數據庫的配置中,rule_chain表中配置的first_rule_node_id就是TbMsgTypeSwitchNode

  9. 進入TbMsgTypeSwitchNodeonMsg方法(實際上所有的ruleNode處理消息的方法都是onMsg),發現根據messageType(此時是CONNECT_EVENT)定義了relationtype並調用ctx.tellNext(msg, relationType);

  10. 此時DefaultTbContext創建一個RuleNodeToRuleChainTellNextMsg,類型是RULE_TO_RULE_CHAIN_TELL_NEXT_MSG,交給RuleChainActor處理;

  11. 接下來將會進入到RuleChainActorMessageProcessoronTellNext方法:

    private void onTellNext(TbMsg msg, RuleNodeId originatorNodeId, Set<String> relationTypes, String failureMessage) {
        try {
            checkActive(msg);
            //消息來源
            EntityId entityId = msg.getOriginator();
            //創建一個tpi,可能會使用
            TopicPartitionInfo tpi = systemContext.resolve(ServiceType.TB_RULE_ENGINE, msg.getQueueName(), tenantId, entityId);
           //查詢有關系的RuleNode,其實就是從relation表中查詢,該消息來源的id,relation_type和在TbMsgTypeSwitchNode定義的relationType一直的節點id,如上Connect Event就沒有找到相應的relation的RuleNodeId
            List<RuleNodeRelation> relations = nodeRoutes.get(originatorNodeId).stream()
                    .filter(r -> contains(relationTypes, r.getType()))
                    .collect(Collectors.toList());
            int relationsCount = relations.size();
           //Connect Event就沒有找到相應的relation的RuleNodeId,消息通過規則引擎,已經處理完成
            if (relationsCount == 0) {
                log.trace("[{}][{}][{}] No outbound relations to process", tenantId, entityId, msg.getId());
                if (relationTypes.contains(TbRelationTypes.FAILURE)) {
                    RuleNodeCtx ruleNodeCtx = nodeActors.get(originatorNodeId);
                    if (ruleNodeCtx != null) {
                        msg.getCallback().onFailure(new RuleNodeException(failureMessage, ruleChainName, ruleNodeCtx.getSelf()));
                    } else {
                        log.debug("[{}] Failure during message processing by Rule Node [{}]. Enable and see debug events for more info", entityId, originatorNodeId.getId());
                        msg.getCallback().onFailure(new RuleEngineException("Failure during message processing by Rule Node [" + originatorNodeId.getId().toString() + "]"));
                    }
                } else {
                    msg.getCallback().onSuccess();
                }
             //舉例:Post telemetry的type可以找到相應的ruleNode,實現類是:TbMsgTimeseriesNode,那么此消息將會交給TbMsgTimeseriesNode處理
            } else if (relationsCount == 1) {
                for (RuleNodeRelation relation : relations) {
                    log.trace("[{}][{}][{}] Pushing message to single target: [{}]", tenantId, entityId, msg.getId(), relation.getOut());
                    pushToTarget(tpi, msg, relation.getOut(), relation.getType());
                }
            } else {
                MultipleTbQueueTbMsgCallbackWrapper callbackWrapper = new MultipleTbQueueTbMsgCallbackWrapper(relationsCount, msg.getCallback());
                log.trace("[{}][{}][{}] Pushing message to multiple targets: [{}]", tenantId, entityId, msg.getId(), relations);
                for (RuleNodeRelation relation : relations) {
                    EntityId target = relation.getOut();
                    putToQueue(tpi, msg, callbackWrapper, target);
                }
            }
        } catch (RuleNodeException rne) {
            msg.getCallback().onFailure(rne);
        } catch (Exception e) {
            msg.getCallback().onFailure(new RuleEngineException("onTellNext - " + e.getMessage()));
        }
    }
    

    What's more:

    如上面的舉例,比如是遙測數據Post telemetry,將會使用TbMsgTimeseriesNodeonMsg做進一步的處理,比如存儲數據,再通過webSocket進行數據的更新如果有webSocket的session的話,或者其他通知消息,就不詳細展開了。

總結:

  1. 處理MQTT的連接其實就是走完了整個規則引擎的邏輯,其他類型的消息,比如遙測數據,屬性更新,RPC請求發送與接收,大體流程大同小異;

  2. 在處理消息流向的時候,我們一定要清楚其訂閱或者發布的主題是什么,這樣我們才不會丟失方向;

  3. Actor的模型就是根據消息的類型,使用AppActor進行一步步的分發,最終交由合適的RuleNode進行處理;

  4. Protobuf類型的消息容易序列化傳輸與解析,所以在thingsboard中大量使用,但是生成的類可讀性不是很高,可以選擇直接讀queue.proto文件,對類有感性的認知。

    ​ 由於作者水平有限,只是梳理了大致的流程,文章難免出現紕漏,望諒解並指正。


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM