項目實戰從0到1之hive(27)數倉項目(九)數倉搭建 - DWS 層


一、數倉搭建 - DWS 層
1.1 業務術語
1)用戶
用戶以設備為判斷標准,在移動統計中,每個獨立設備認為是一個獨立用戶。Android
系統根據 IMEI 號,IOS 系統根據 OpenUDID 來標識一個獨立用戶,每部手機一個用戶

2)新增用戶
首次聯網使用應用的用戶。如果一個用戶首次打開某 APP,那這個用戶定義為新增用
戶;卸載再安裝的設備,不會被算作一次新增。新增用戶包括日新增用戶、周新增用戶、月
新增用戶

3)活躍用戶
打開應用的用戶即為活躍用戶,不考慮用戶的使用情況。每天一台設備打開多次會被計
為一個活躍用戶

4)周(月)活躍用戶
某個自然周(月)內啟動過應用的用戶,該周(月)內的多次啟動只記一個活躍用戶

5)月活躍率
月活躍用戶與截止到該月累計的用戶總和之間的比例

6)沉默用戶
用戶僅在安裝當天(次日)啟動一次,后續時間無再啟動行為。該指標可以反映新增用
戶質量和用戶與 APP 的匹配程度

7)版本分布
不同版本的周內各天新增用戶數,活躍用戶數和啟動次數。利於判斷 APP 各個版本之
間的優劣和用戶行為習慣

8)本周回流用戶
上周未啟動過應用,本周啟動了應用的用戶

9)連續 n 周活躍用戶
連續 n 周,每周至少啟動一次

10)忠誠用戶
連續活躍 5 周以上的用戶

11)連續活躍用戶
連續 2 周及以上活躍的用戶

12)近期流失用戶
連續 n(2<= n <= 4)周沒有啟動應用的用戶。(第 n+1 周沒有啟動過)

13)留存用戶
某段時間內的新增用戶,經過一段時間后,仍然使用應用的被認作是留存用戶;這部分
用戶占當時新增用戶的比例即是留存率
例如,5 月份新增用戶 200,這 200 人在 6 月份啟動過應用的有 100 人,7 月份啟動過應用的有 80 人,8 月份啟動過應用的有 50 人;則 5 月份新增用戶一個月后的留存率是 50%,二個月后的留存率是 40%,三個月后的留存率是 25%

14)用戶新鮮度
每天啟動應用的新老用戶比例,即新增用戶數占活躍用戶數的比例

15)單次使用時長
每次啟動使用的時間長度

16)日使用時長
累計一天內的使用時間長度

17)啟動次數計算標准
IOS 平台應用退到后台就算一次獨立的啟動;Android 平台我們規定,兩次啟動之間的間隔小於 30 秒,被計算一次啟動。用戶在使用過程中,若因收發短信或接電話等退出應用30 秒又再次返回應用中,那這兩次行為應該是延續而非獨立的,所以可以被算作一次使用行為,即一次啟動。業內大多使用 30 秒這個標准,但用戶還是可以自定義此時間間隔


1.2 系統函數
1.2.1 collect_set 函數
1)創建原數據表

drop table if exists stud;
create table stud (name string, area string, course string, score int);

2)向原數據表中插入數據

insert into table stud values('zhang3','bj','math',88);
insert into table stud values('li4','bj','math',99);
insert into table stud values('wang5','sh','chinese',92);
insert into table stud values('zhao6','sh','chinese',54);
insert into table stud values('tian7','bj','chinese',91);

3)查詢表中數據

select * from stud;

stud.name stud.area stud.course stud.score
zhang3 bj math 88
li4 bj math 99
wang5 sh chinese 92
zhao6 sh chinese 54
tian7 bj chinese 91

4)把同一分組的不同行的數據聚合成一個集合

select course, collect_set(area), avg(score) from stud group by course;

chinese ["sh","bj"] 79.0
math ["bj"] 93.5

5) 用下標可以取某一個

select course, collect_set(area)[0], avg(score) from

stud group by course;
chinese sh 79.0
math bj 93.5

1.2.2 nvl 函數
1)基本語法

NVL(表達式 1,表達式 2)

如果表達式 1 為空值,NVL 返回值為表達式 2 的值,否則返回表達式 1 的值。 該函數的目的是把一個空值(null)轉換成一個實際的值。其表達式的值可以是數字型、字符型和日期型。但是表達式 1 和表達式 2 的數據類型必須為同一個類型

1.2.3 日期處理函數
1)date_format 函數(根據格式整理日期)

hive (gmall)> select date_format('2020-03-10','yyyy-MM');
2020-03

2)date_add 函數(加減日期)

hive (gmall)> select date_add('2020-03-10',-1);
2020-03-09
hive (gmall)> select date_add('2020-03-10',1);
2020-03-11

3)next_day 函數
(1)取當前天的下一個周一

hive (gmall)> select next_day('2020-03-12','MO');
2020-03-16

說明:星期一到星期日的英文(Monday,Tuesday、Wednesday、Thursday、Friday、Saturday、Sunday)

(2)取當前周的周一

hive (gmall)> select date_add(next_day('2020-03-12','MO'),-7);
2020-03-11

4)last_day 函數(求當月最后一天日期)

hive (gmall)> select last_day('2020-03-10');
2020-03-31

1.3 DWS 層(用戶行為)
1.3.1 每日設備行為
每日設備行為,主要按照 設備 id 統計




1)建表語句

drop table if exists dws_uv_detail_daycount;
create external table dws_uv_detail_daycount
(
`mid_id` string COMMENT '設備唯一標識',
`user_id` string COMMENT '用戶標識',
`version_code` string COMMENT '程序版本號',
`version_name` string COMMENT '程序版本名',
`lang` string COMMENT '系統語言',
`source` string COMMENT '渠道號',
`os` string COMMENT '安卓系統版本',
`area` string COMMENT '區域',
`model` string COMMENT '手機型號',
`brand` string COMMENT '手機品牌',
`sdk_version` string COMMENT 'sdkVersion',
`gmail` string COMMENT 'gmail',
`height_width` string COMMENT '屏幕寬高',
`app_time` string COMMENT '客戶端日志產生時的時間',
`network` string COMMENT '網絡模式',
`lng` string COMMENT '經度',
`lat` string COMMENT '緯度',
`login_count` bigint COMMENT '活躍次數'
)
partitioned by(dt string)
stored as parquet
location '/warehouse/gmall/dws/dws_uv_detail_daycount';

2)數據裝載

insert overwrite table dws_uv_detail_daycount partition(dt='2020-03-10')
select
mid_id,
concat_ws('|', collect_set(user_id)) user_id,
concat_ws('|', collect_set(version_code)) version_code,
concat_ws('|', collect_set(version_name)) version_name,
concat_ws('|', collect_set(lang))lang,
concat_ws('|', collect_set(source)) source,
concat_ws('|', collect_set(os)) os,
concat_ws('|', collect_set(area)) area,
concat_ws('|', collect_set(model)) model,
concat_ws('|', collect_set(brand)) brand,
concat_ws('|', collect_set(sdk_version)) sdk_version,
concat_ws('|', collect_set(gmail)) gmail,
concat_ws('|', collect_set(height_width)) height_width,
concat_ws('|', collect_set(app_time)) app_time,
concat_ws('|', collect_set(network)) network,
concat_ws('|', collect_set(lng)) lng,
concat_ws('|', collect_set(lat)) lat,
count(*) login_count
from dwd_start_log
where dt='2020-03-10'
group by mid_id;

3)查詢加載結果

select * from dws_uv_detail_daycount where dt='2020-03-10';

1.4 DWS 層(業務)
DWS 層的寬表字段,是站在不同維度的視角去看事實表,重點關注事實表的度量值




1.4.1 每日會員行為
1)建表語句

drop table if exists dws_user_action_daycount;
create external table dws_user_action_daycount
(
user_id string comment '用戶 id',
login_count bigint comment '登錄次數',
cart_count bigint comment '加入購物車次數',
cart_amount double comment '加入購物車金額',
order_count bigint comment '下單次數',
order_amount decimal(16,2) comment '下單金額',
payment_count bigint comment '支付次數',
payment_amount decimal(16,2) comment '支付金額'
) COMMENT '每日用戶行為'
PARTITIONED BY (`dt` string)
stored as parquet
location '/warehouse/gmall/dws/dws_user_action_daycount/'
tblproperties ("parquet.compression"="lzo");

2)數據裝載

with
tmp_login as
(
select
user_id,
count(*) login_count
from dwd_start_log
where dt='2020-03-10'
and user_id is not null
group by user_id
),
tmp_cart as
(
select
user_id,
count(*) cart_count,
sum(cart_price*sku_num) cart_amount
from dwd_fact_cart_info
where dt='2020-03-10'
and user_id is not null
and date_format(create_time,'yyyy-MM-dd')='2020-03-10'
group by user_id
),
tmp_order as
(
select
user_id,
count(*) order_count,
sum(final_total_amount) order_amount
from dwd_fact_order_info
where dt='2020-03-10'
group by user_id
) ,
tmp_payment as
(
select
user_id,
count(*) payment_count,
sum(payment_amount) payment_amount
from dwd_fact_payment_info
where dt='2020-03-10'
group by user_id
)
insert overwrite table dws_user_action_daycount partition(dt='2020-03-10')
select
user_actions.user_id,
sum(user_actions.login_count),
sum(user_actions.cart_count),
sum(user_actions.cart_amount),
sum(user_actions.order_count),
sum(user_actions.order_amount),
sum(user_actions.payment_count),
sum(user_actions.payment_amount)
from
(
select
user_id,
login_count,
0 cart_count,
0 cart_amount,
0 order_count,
0 order_amount,
0 payment_count,
0 payment_amount
from
tmp_login
union all
select
user_id,
0 login_count,
cart_count,
cart_amount,
0 order_count,
0 order_amount,
0 payment_count,
0 payment_amount
from
tmp_cart
union all
select
user_id,
0 login_count,
0 cart_count,
0 cart_amount,
order_count,
order_amount,
0 payment_count,
0 payment_amount
from tmp_order
union all
select
user_id,
0 login_count,
0 cart_count,
0 cart_amount,
0 order_count,
0 order_amount,
payment_count,
payment_amount
from tmp_payment
) user_actions
group by user_id;

3)查詢加載結果

select * from dws_user_action_daycount where dt=2020-03-10’;

1.4.2 每日商品行為

1)建表語句

drop table if exists dws_sku_action_daycount;
create external table dws_sku_action_daycount
(
sku_id string comment 'sku_id',
order_count bigint comment '被下單次數',
order_num bigint comment '被下單件數',
order_amount decimal(16,2) comment '被下單金額',
payment_count bigint comment '被支付次數',
payment_num bigint comment '被支付件數',
payment_amount decimal(16,2) comment '被支付金額',
refund_count bigint comment '被退款次數',
refund_num bigint comment '被退款件數',
refund_amount decimal(16,2) comment '被退款金額',
cart_count bigint comment '被加入購物車次數',
cart_num bigint comment '被加入購物車件數',
favor_count bigint comment '被收藏次數',
appraise_good_count bigint comment '好評數',
appraise_mid_count bigint comment '中評數',
appraise_bad_count bigint comment '差評數',
appraise_default_count bigint comment '默認評價數'
) COMMENT '每日商品行為'
PARTITIONED BY (`dt` string)
stored as parquet
location '/warehouse/gmall/dws/dws_sku_action_daycount/'
tblproperties ("parquet.compression"="lzo");

2)數據裝載
注意:如果是 23 點 59 下單,支付日期跨天。需要從訂單詳情里面取出支付時間是今天,訂單時間是昨天或者今天的訂單

with
tmp_order as
(
select
sku_id,
count(*) order_count,
sum(sku_num) order_num,
sum(total_amount) order_amount
from dwd_fact_order_detail
where dt='2020-03-10'
group by sku_id
),
tmp_payment as
(
select
sku_id,
count(*) payment_count,
sum(sku_num) payment_num,
sum(total_amount) payment_amount
from dwd_fact_order_detail
where dt='2020-03-10'
and order_id in
(
select
id
from dwd_fact_order_info
where (dt='2020-03-10' or dt=date_add('2020-03-10',-1))
and date_format(payment_time,'yyyy-MM-dd')='2020-03-10'
)
group by sku_id
),
tmp_refund as
(
select
sku_id,
count(*) refund_count,
sum(refund_num) refund_num,
sum(refund_amount) refund_amount
from dwd_fact_order_refund_info
where dt='2020-03-10'
group by sku_id
),
tmp_cart as
(
select
sku_id,
count(*) cart_count,
sum(sku_num) cart_num
from dwd_fact_cart_info
where dt='2020-03-10'
and date_format(create_time,'yyyy-MM-dd')='2020-03-10'
group by sku_id
),
tmp_favor as
(
select
sku_id,
count(*) favor_count
from dwd_fact_favor_info
where dt='2020-03-10'
and date_format(create_time,'yyyy-MM-dd')='2020-03-10'
group by sku_id
),
tmp_appraise as
(
select
sku_id,
sum(if(appraise='1201',1,0)) appraise_good_count,
sum(if(appraise='1202',1,0)) appraise_mid_count,
sum(if(appraise='1203',1,0)) appraise_bad_count,
sum(if(appraise='1204',1,0)) appraise_default_count
from dwd_fact_comment_info
where dt='2020-03-10'
group by sku_id
)
insert overwrite table dws_sku_action_daycount partition(dt='2020-03-10')
select
sku_id,
sum(order_count),
sum(order_num),
sum(order_amount),
sum(payment_count),
sum(payment_num),
sum(payment_amount),
sum(refund_count),
sum(refund_num),
sum(refund_amount),
sum(cart_count),
sum(cart_num),
sum(favor_count),
sum(appraise_good_count),
sum(appraise_mid_count),
sum(appraise_bad_count),
sum(appraise_default_count)
from
(
select
sku_id,
order_count,
order_num,
order_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
0 refund_count,
0 refund_num,
0 refund_amount,
0 cart_count,
0 cart_num,
0 favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
from tmp_order
union all
select
sku_id,
0 order_count,
0 order_num,
0 order_amount,
payment_count,
payment_num,
payment_amount,
0 refund_count,
0 refund_num,
0 refund_amount,
0 cart_count,
0 cart_num,
0 favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
from tmp_payment
union all
select
sku_id,
0 order_count,
0 order_num,
0 order_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
refund_count,
refund_num,
refund_amount,
0 cart_count,
0 cart_num,
0 favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
from tmp_refund
union all
select
sku_id,
0 order_count,
0 order_num,
0 order_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
0 refund_count,
0 refund_num,
0 refund_amount,
cart_count,
cart_num,
0 favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
from tmp_cart
union all
select
sku_id,
0 order_count,
0 order_num,
0 order_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
0 refund_count,
0 refund_num,
0 refund_amount,
0 cart_count,
0 cart_num,
favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
from tmp_favor
union all
select
sku_id,
0 order_count,
0 order_num,
0 order_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
0 refund_count,
0 refund_num,
0 refund_amount,
0 cart_count,
0 cart_num,
0 favor_count,
appraise_good_count,
appraise_mid_count,
appraise_bad_count,
appraise_default_count
from tmp_appraise
)tmp
group by sku_id;

3)查詢加載結果

select * from dws_sku_action_daycount where dt='2020-03-10';

1.4.5 每日購買行為




1)建表語句

drop table if exists dws_sale_detail_daycount;
create external table dws_sale_detail_daycount
(
user_id string comment '用戶 id',
sku_id string comment '商品 id',
user_gender string comment '用戶性別',
user_age string comment '用戶年齡',
user_level string comment '用戶等級',
order_price decimal(10,2) comment '商品價格',
sku_name string comment '商品名稱',
sku_tm_id string comment '品牌 id',
sku_category3_id string comment '商品三級品類 id',
sku_category2_id string comment '商品二級品類 id',
sku_category1_id string comment '商品一級品類 id',
sku_category3_name string comment '商品三級品類名稱',
sku_category2_name string comment '商品二級品類名稱',
sku_category1_name string comment '商品一級品類名稱',
spu_id string comment '商品 spu',
sku_num int comment '購買個數',
order_count bigint comment '當日下單單數',
order_amount decimal(16,2) comment '當日下單金額'
) COMMENT '每日購買行為'
PARTITIONED BY (`dt` string)
stored as parquet
location '/warehouse/gmall/dws/dws_sale_detail_daycount/'
tblproperties ("parquet.compression"="lzo");

2)數據裝載

insert overwrite table dws_sale_detail_daycount partition(dt='2020-03-10')
select
op.user_id,
op.sku_id,
ui.gender,
months_between('2020-03-10', ui.birthday)/12 age,
ui.user_level,
si.price,
si.sku_name,
si.tm_id,
si.category3_id,
si.category2_id,
si.category1_id,
si.category3_name,
si.category2_name,
si.category1_name,
si.spu_id,
op.sku_num,
op.order_count,
op.order_amount
from
(
select
user_id,
sku_id,
sum(sku_num) sku_num,
count(*) order_count,
sum(total_amount) order_amount
from dwd_fact_order_detail
where dt='2020-03-10'
group by user_id, sku_id
)op
join
(
select
*
from dwd_dim_user_info_his
where end_date='9999-99-99'
)ui on op.user_id = ui.id
join
(
select
*
from dwd_dim_sku_info
where dt='2020-03-10'
)si on op.sku_id = si.id;

3)查詢加載結果

select * from dws_sale_detail_daycount where dt='2020-03-10';

1.5 DWS 層數據導入腳本
1)vim dwd_to_dws.sh
在腳本中填寫如下內容

#!/bin/bash
APP=gmall
hive=/opt/modules/hive/bin/hive
# 如果是輸入的日期按照取輸入日期;如果沒輸入日期取當前時間的前一天
if [ -n "$1" ] ;then
do_date=$1
else
do_date=`date -d "-1 day" +%F`
fi
sql="
insert overwrite table ${APP}.dws_uv_detail_daycount partition(dt='$do_date')
select
mid_id,
concat_ws('|', collect_set(user_id)) user_id,
concat_ws('|', collect_set(version_code)) version_code,
concat_ws('|', collect_set(version_name)) version_name,
concat_ws('|', collect_set(lang))lang,
concat_ws('|', collect_set(source)) source,
concat_ws('|', collect_set(os)) os,
concat_ws('|', collect_set(area)) area,
concat_ws('|', collect_set(model)) model,
concat_ws('|', collect_set(brand)) brand,
concat_ws('|', collect_set(sdk_version)) sdk_version,
concat_ws('|', collect_set(gmail)) gmail,
concat_ws('|', collect_set(height_width)) height_width,
concat_ws('|', collect_set(app_time)) app_time,
concat_ws('|', collect_set(network)) network,
concat_ws('|', collect_set(lng)) lng,
concat_ws('|', collect_set(lat)) lat,
count(*) login_count
from ${APP}.dwd_start_log
where dt='$do_date'
group by mid_id;
with
tmp_login as
(
select
user_id,
count(*) login_count
from ${APP}.dwd_start_log
where dt='$do_date'
and user_id is not null
group by user_id
),
tmp_cart as
(
select
user_id,
count(*) cart_count,
sum(cart_price*sku_num) cart_amount
from ${APP}.dwd_fact_cart_info
where dt='$do_date'
and user_id is not null
and date_format(create_time,'yyyy-MM-dd')='$do_date'
group by user_id
),
tmp_order as
(
select
user_id,
count(*) order_count,
sum(final_total_amount) order_amount
from ${APP}.dwd_fact_order_info
where dt='$do_date'
group by user_id
) ,
tmp_payment as
(
select
user_id,
count(*) payment_count,
sum(payment_amount) payment_amount
from ${APP}.dwd_fact_payment_info
where dt='$do_date'
group by user_id
)


insert overwrite table ${APP}.dws_user_action_daycount partition(dt='$do_date')
select
user_actions.user_id,
sum(user_actions.login_count),
sum(user_actions.cart_count),
sum(user_actions.cart_amount),
sum(user_actions.order_count),
sum(user_actions.order_amount),
sum(user_actions.payment_count),
sum(user_actions.payment_amount)
from
(
select
user_id,
login_count,
0 cart_count,
0 cart_amount,
0 order_count,
0 order_amount,
0 payment_count,
0 payment_amount
from
tmp_login
union all
select
user_id,
0 login_count,
cart_count,
cart_amount,
0 order_count,
0 order_amount,
0 payment_count,
0 payment_amount
from
tmp_cart
union all
select
user_id,
0 login_count,
0 cart_count,
0 cart_amount,
order_count,
order_amount,
0 payment_count,
0 payment_amount
from tmp_order
union all
select
user_id,
0 login_count,
0 cart_count,
0 cart_amount,
0 order_count,
0 order_amount,
payment_count,
payment_amount
from tmp_payment
) user_actions
group by user_id;
with
tmp_order as
(
select
sku_id,
count(*) order_count,
sum(sku_num) order_num,
sum(total_amount) order_amount
from ${APP}.dwd_fact_order_detail
where dt='$do_date'
group by sku_id
),
tmp_payment as
(
select
sku_id,
count(*) payment_count,
sum(sku_num) payment_num,
sum(total_amount) payment_amount
from ${APP}.dwd_fact_order_detail
where dt='$do_date'
and order_id in
(
select
id
from ${APP}.dwd_fact_order_info
where (dt='$do_date' or dt=date_add('$do_date',-1))
and date_format(payment_time,'yyyy-MM-dd')='$do_date'
)
group by sku_id
),
tmp_refund as
(
select
sku_id,
count(*) refund_count,
sum(refund_num) refund_num,
sum(refund_amount) refund_amount
from ${APP}.dwd_fact_order_refund_info
where dt='$do_date'
group by sku_id
),
tmp_cart as
(
select
sku_id,
count(*) cart_count,
sum(sku_num) cart_num
from ${APP}.dwd_fact_cart_info
where dt='$do_date'
and date_format(create_time,'yyyy-MM-dd')='$do_date'
group by sku_id
),
tmp_favor as
(
select
sku_id,
count(*) favor_count
from ${APP}.dwd_fact_favor_info
where dt='$do_date'
and date_format(create_time,'yyyy-MM-dd')='$do_date'
group by sku_id
),
tmp_appraise as
(
select
sku_id,
sum(if(appraise='1201',1,0)) appraise_good_count,
sum(if(appraise='1202',1,0)) appraise_mid_count,
sum(if(appraise='1203',1,0)) appraise_bad_count,
sum(if(appraise='1204',1,0)) appraise_default_count
from ${APP}.dwd_fact_comment_info
where dt='$do_date'
group by sku_id
)


insert overwrite table ${APP}.dws_sku_action_daycount partition(dt='$do_date')
select
sku_id,
sum(order_count),
sum(order_num),
sum(order_amount),
sum(payment_count),
sum(payment_num),
sum(payment_amount),
sum(refund_count),
sum(refund_num),
sum(refund_amount),
sum(cart_count),
sum(cart_num),
sum(favor_count),
sum(appraise_good_count),
sum(appraise_mid_count),
sum(appraise_bad_count),
sum(appraise_default_count)
from
(
select
sku_id,
order_count,
order_num,
order_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
0 refund_count,
0 refund_num,
0 refund_amount,
0 cart_count,
0 cart_num,
0 favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
from tmp_order
union all
select
sku_id,
0 order_count,
0 order_num,
0 order_amount,
payment_count,
payment_num,
payment_amount,
0 refund_count,
0 refund_num,
0 refund_amount,
0 cart_count,
0 cart_num,
0 favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
from tmp_payment
union all
select
sku_id,
0 order_count,
0 order_num,
0 order_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
refund_count,
refund_num,
refund_amount,
0 cart_count,
0 cart_num,
0 favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
from tmp_refund
union all
select
sku_id,
0 order_count,
0 order_num,
0 order_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
0 refund_count,
0 refund_num,
0 refund_amount,
cart_count,
cart_num,
0 favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
from tmp_cart
union all
select
sku_id,
0 order_count,
0 order_num,
0 order_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
0 refund_count,
0 refund_num,
0 refund_amount,
0 cart_count,
0 cart_num,
favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
from tmp_favor
union all
select
sku_id,
0 order_count,
0 order_num,
0 order_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
0 refund_count,
0 refund_num,
0 refund_amount,
0 cart_count,
0 cart_num,
0 favor_count,
appraise_good_count,
appraise_mid_count,
appraise_bad_count,
appraise_default_count
from tmp_appraise
)tmp
group by sku_id;


insert overwrite table ${APP}.dws_sale_detail_daycount partition(dt='$do_date')
select
op.user_id,
op.sku_id,
ui.gender,
months_between('$do_date', ui.birthday)/12 age,
ui.user_level,
si.price,
si.sku_name,
si.tm_id,
si.category3_id,
si.category2_id,
si.category1_id,
si.category3_name,
si.category2_name,
si.category1_name,
si.spu_id,
op.sku_num,
op.order_count,
op.order_amount
from
(
select
user_id,
sku_id,
sum(sku_num) sku_num,
count(*) order_count,
sum(total_amount) order_amount
from ${APP}.dwd_fact_order_detail
where dt='$do_date'
group by user_id, sku_id
)op
join
(
select
*
from ${APP}.dwd_dim_user_info_his
where end_date='9999-99-99'
)ui on op.user_id = ui.id
join
(
select
*
from ${APP}.dwd_dim_sku_info
where dt='$do_date'
)si on op.sku_id = si.id;
"
$hive -e "$sql"

2)增加腳本執行權限

chmod 770 dwd_to_dws.sh

3)執行腳本導入數據

 

dwd_to_dws.sh 2020-03-11

4)查看導入數據

select * from dws_uv_detail_daycount where dt='2020-03-11';
select * from dws_user_action_daycount where dt='2020-03-11';
select * from dws_sku_action_daycount where dt='2020-03-11';
select * from dws_sale_detail_daycount where dt='2020-03-11';

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM