LinkedBlockingQueue原理分析


概述

LinkedBlockingQueue也是一個阻塞隊列,相比於ArrayBlockingQueue,他的底層是使用鏈表實現的,而且是一個可有界可無界的隊列,在生產和消費的時候使用了兩把鎖,提高並發,是一個高效的阻塞隊列,下面就分析一下這個隊列的源碼。

屬性

//鏈表節點定義
static class Node<E> {
        //節點中存放的值
        E item;
        //下一個節點
        Node<E> next;

        Node(E x) { item = x; }
    }
    //容量
    private final int capacity;
    //隊列中元素個數
    private final AtomicInteger count = new AtomicInteger();
    //隊列的首節點
    transient Node<E> head;
    //隊列的未節點
    private transient Node<E> last;

    /** Lock held by take, poll, etc */
    //消費者的鎖
    private final ReentrantLock takeLock = new ReentrantLock();

    /** Wait queue for waiting takes */
    private final Condition notEmpty = takeLock.newCondition();

    /** Lock held by put, offer, etc */
   //生產者的鎖
    private final ReentrantLock putLock = new ReentrantLock();

    /** Wait queue for waiting puts */
    private final Condition notFull = putLock.newCondition();

構造方法

    //默認構造方法,無界
    public LinkedBlockingQueue() {
        this(Integer.MAX_VALUE);
    }
    //可以傳入容量大小,有界
    public LinkedBlockingQueue(int capacity) {
        if (capacity <= 0) throw new IllegalArgumentException();
        this.capacity = capacity;
        last = head = new Node<E>(null);
    }

消費者常用方法

take()方法

    public E take() throws InterruptedException {
        E x;
        int c = -1;
        final AtomicInteger count = this.count;
        final ReentrantLock takeLock = this.takeLock;
        //獲取可中斷鎖
        takeLock.lockInterruptibly();
        try {
           //如果隊列為空
            while (count.get() == 0) {
                notEmpty.await();
            }
            //執行消費
            x = dequeue();
            //先賦值,后自減
            c = count.getAndDecrement();
            if (c > 1)
               //如果隊列中還有值,喚醒別的消費者
                notEmpty.signal();
        } finally {
            takeLock.unlock();
        }
        //隊列中還有要給剩余空間
        if (c == capacity)
            //喚醒生產者線程
            signalNotFull();
        return x;
    }

進入dequeue()方法

//通過這個方法可以看出,鏈表的首節點的值是null,每次獲取元素的時候
//先把首節點干掉,然后從第二個節點獲取值
private E dequeue() {
        Node<E> h = head;
        Node<E> first = h.next;
        h.next = h; // help GC
        head = first;
        E x = first.item;
        first.item = null;
        return x;
    }

poll()方法

public E poll() {
        final AtomicInteger count = this.count;
        if (count.get() == 0)
            return null;
        E x = null;
        int c = -1;
        final ReentrantLock takeLock = this.takeLock;
        takeLock.lock();
        try {
             //如果隊列不為空
            if (count.get() > 0) {
                x = dequeue();
                c = count.getAndDecrement();
                if (c > 1)
                    notEmpty.signal();
            }
        } finally {
            takeLock.unlock();
        }
        if (c == capacity)
            signalNotFull();
        return x;
    }

poll(long timeout, TimeUnit unit)

  這個方法和上面的區別就是加入了時延,在規定的時間沒有消費成功,就返回失敗。

生產者常用方法

add()方法

    public boolean add(E e) {
        if (offer(e))
            return true;
        else
            throw new IllegalStateException("Queue full");
    }

直接調用父類AbstractQueue的方法

offer(E e)方法

public boolean offer(E e) {
        if (e == null) throw new NullPointerException();
        final AtomicInteger count = this.count;
        //如果已經滿了,直接返回失敗
        if (count.get() == capacity)
            return false;
        int c = -1;
        Node<E> node = new Node<E>(e);
        final ReentrantLock putLock = this.putLock;
        putLock.lock();
        try {
            //雙重判斷
            if (count.get() < capacity) {
                //加入鏈表
                enqueue(node);
                c = count.getAndIncrement();
                if (c + 1 < capacity)
                    //喚醒生產者線程,繼續插入
                    notFull.signal();
            }
        } finally {
            putLock.unlock();
        }
        if (c == 0)
            //說明里面有一個元素,喚醒消費者
            signalNotEmpty();
        return c >= 0;
    }

進入enqueue()方法

    private void enqueue(Node<E> node) {
        // assert putLock.isHeldByCurrentThread();
        // assert last.next == null;
        last = last.next = node;
    }

直接放到鏈表的尾部

offer(E e, long timeout, TimeUnit unit)

和poll(E e,long timeout,TimeUnit unit)相反。

put(E e)方法

public void put(E e) throws InterruptedException {
        if (e == null) throw new NullPointerException();
        // Note: convention in all put/take/etc is to preset local var
        // holding count negative to indicate failure unless set.
        int c = -1;
        Node<E> node = new Node<E>(e);
        final ReentrantLock putLock = this.putLock;
        final AtomicInteger count = this.count;
        putLock.lockInterruptibly();
        try {
            //如果滿了,等待
            while (count.get() == capacity) {
                notFull.await();
            }
            enqueue(node);
            c = count.getAndIncrement();
            if (c + 1 < capacity)
                notFull.signal();
        } finally {
            putLock.unlock();
        }
        if (c == 0)
            signalNotEmpty();
    }

總結

  總體來說比較簡單,下面就列一下LindedBlockingQueue的特點:

  • 生產者和消費者采用不同的鎖控制,提高並發效率
  • 底層采用鏈表存儲,構造方法中可以傳入隊列的容量,默認為無界
  • 鏈表的首節點是一個空節點


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM