概述
LinkedBlockingQueue也是一個阻塞隊列,相比於ArrayBlockingQueue,他的底層是使用鏈表實現的,而且是一個可有界可無界的隊列,在生產和消費的時候使用了兩把鎖,提高並發,是一個高效的阻塞隊列,下面就分析一下這個隊列的源碼。
屬性
//鏈表節點定義 static class Node<E> { //節點中存放的值 E item; //下一個節點 Node<E> next; Node(E x) { item = x; } } //容量 private final int capacity; //隊列中元素個數 private final AtomicInteger count = new AtomicInteger(); //隊列的首節點 transient Node<E> head; //隊列的未節點 private transient Node<E> last; /** Lock held by take, poll, etc */ //消費者的鎖 private final ReentrantLock takeLock = new ReentrantLock(); /** Wait queue for waiting takes */ private final Condition notEmpty = takeLock.newCondition(); /** Lock held by put, offer, etc */ //生產者的鎖 private final ReentrantLock putLock = new ReentrantLock(); /** Wait queue for waiting puts */ private final Condition notFull = putLock.newCondition();
構造方法
//默認構造方法,無界 public LinkedBlockingQueue() { this(Integer.MAX_VALUE); } //可以傳入容量大小,有界 public LinkedBlockingQueue(int capacity) { if (capacity <= 0) throw new IllegalArgumentException(); this.capacity = capacity; last = head = new Node<E>(null); }
消費者常用方法
take()方法
public E take() throws InterruptedException { E x; int c = -1; final AtomicInteger count = this.count; final ReentrantLock takeLock = this.takeLock; //獲取可中斷鎖 takeLock.lockInterruptibly(); try { //如果隊列為空 while (count.get() == 0) { notEmpty.await(); } //執行消費 x = dequeue(); //先賦值,后自減 c = count.getAndDecrement(); if (c > 1) //如果隊列中還有值,喚醒別的消費者 notEmpty.signal(); } finally { takeLock.unlock(); } //隊列中還有要給剩余空間 if (c == capacity) //喚醒生產者線程 signalNotFull(); return x; }
進入dequeue()方法
//通過這個方法可以看出,鏈表的首節點的值是null,每次獲取元素的時候 //先把首節點干掉,然后從第二個節點獲取值 private E dequeue() { Node<E> h = head; Node<E> first = h.next; h.next = h; // help GC head = first; E x = first.item; first.item = null; return x; }
poll()方法
public E poll() { final AtomicInteger count = this.count; if (count.get() == 0) return null; E x = null; int c = -1; final ReentrantLock takeLock = this.takeLock; takeLock.lock(); try { //如果隊列不為空 if (count.get() > 0) { x = dequeue(); c = count.getAndDecrement(); if (c > 1) notEmpty.signal(); } } finally { takeLock.unlock(); } if (c == capacity) signalNotFull(); return x; }
poll(long timeout, TimeUnit unit)
這個方法和上面的區別就是加入了時延,在規定的時間沒有消費成功,就返回失敗。
生產者常用方法
add()方法
public boolean add(E e) { if (offer(e)) return true; else throw new IllegalStateException("Queue full"); }
直接調用父類AbstractQueue的方法
offer(E e)方法
public boolean offer(E e) { if (e == null) throw new NullPointerException(); final AtomicInteger count = this.count; //如果已經滿了,直接返回失敗 if (count.get() == capacity) return false; int c = -1; Node<E> node = new Node<E>(e); final ReentrantLock putLock = this.putLock; putLock.lock(); try { //雙重判斷 if (count.get() < capacity) { //加入鏈表 enqueue(node); c = count.getAndIncrement(); if (c + 1 < capacity) //喚醒生產者線程,繼續插入 notFull.signal(); } } finally { putLock.unlock(); } if (c == 0) //說明里面有一個元素,喚醒消費者 signalNotEmpty(); return c >= 0; }
進入enqueue()方法
private void enqueue(Node<E> node) { // assert putLock.isHeldByCurrentThread(); // assert last.next == null; last = last.next = node; }
直接放到鏈表的尾部
offer(E e, long timeout, TimeUnit unit)
和poll(E e,long timeout,TimeUnit unit)相反。
put(E e)方法
public void put(E e) throws InterruptedException { if (e == null) throw new NullPointerException(); // Note: convention in all put/take/etc is to preset local var // holding count negative to indicate failure unless set. int c = -1; Node<E> node = new Node<E>(e); final ReentrantLock putLock = this.putLock; final AtomicInteger count = this.count; putLock.lockInterruptibly(); try { //如果滿了,等待 while (count.get() == capacity) { notFull.await(); } enqueue(node); c = count.getAndIncrement(); if (c + 1 < capacity) notFull.signal(); } finally { putLock.unlock(); } if (c == 0) signalNotEmpty(); }
總結
總體來說比較簡單,下面就列一下LindedBlockingQueue的特點:
- 生產者和消費者采用不同的鎖控制,提高並發效率
- 底層采用鏈表存儲,構造方法中可以傳入隊列的容量,默認為無界
- 鏈表的首節點是一個空節點