LRU, Least Recently Used, LRU算法根據各block(cache line)使用的情況, 總是選擇那個最長時間未被使用的block進行替換。這種策略比較好的反映了程序局部性規律。
gem5中該替換策略的代碼:

void LRURP::invalidate(const std::shared_ptr<ReplacementData>& replacement_data) const { // Reset last touch timestamp std::static_pointer_cast<LRUReplData>( replacement_data)->lastTouchTick = Tick(0); } void LRURP::touch(const std::shared_ptr<ReplacementData>& replacement_data) const { // Update last touch timestamp std::static_pointer_cast<LRUReplData>( replacement_data)->lastTouchTick = curTick(); } void LRURP::reset(const std::shared_ptr<ReplacementData>& replacement_data) const { // Set last touch timestamp std::static_pointer_cast<LRUReplData>( replacement_data)->lastTouchTick = curTick(); } ReplaceableEntry* LRURP::getVictim(const ReplacementCandidates& candidates) const { // There must be at least one replacement candidate assert(candidates.size() > 0); // Visit all candidates to find victim ReplaceableEntry* victim = candidates[0]; for (const auto& candidate : candidates) { // Update victim entry if necessary if (std::static_pointer_cast<LRUReplData>( candidate->replacementData)->lastTouchTick < std::static_pointer_cast<LRUReplData>( victim->replacementData)->lastTouchTick) { victim = candidate; } } return victim; }
MRU(Most Recently Used)和LRU類似,差別在於選擇最近被使用的block進行替換。
gem5中該替換策略的代碼:

void MRURP::invalidate(const std::shared_ptr<ReplacementData>& replacement_data) const { // Reset last touch timestamp std::static_pointer_cast<MRUReplData>( replacement_data)->lastTouchTick = Tick(0); } void MRURP::touch(const std::shared_ptr<ReplacementData>& replacement_data) const { // Update last touch timestamp std::static_pointer_cast<MRUReplData>( replacement_data)->lastTouchTick = curTick(); } void MRURP::reset(const std::shared_ptr<ReplacementData>& replacement_data) const { // Set last touch timestamp std::static_pointer_cast<MRUReplData>( replacement_data)->lastTouchTick = curTick(); } ReplaceableEntry* MRURP::getVictim(const ReplacementCandidates& candidates) const { // There must be at least one replacement candidate assert(candidates.size() > 0); // Visit all candidates to find victim ReplaceableEntry* victim = candidates[0]; for (const auto& candidate : candidates) { std::shared_ptr<MRUReplData> candidate_replacement_data = std::static_pointer_cast<MRUReplData>(candidate->replacementData); // Stop searching entry if a cache line that doesn't warm up is found. if (candidate_replacement_data->lastTouchTick == 0) { victim = candidate; break; } else if (candidate_replacement_data->lastTouchTick > std::static_pointer_cast<MRUReplData>( victim->replacementData)->lastTouchTick) { victim = candidate; } } return victim; }
Random,隨機選擇一個block進行替換。
gem5中該替換策略的代碼:

void RandomRP::invalidate(const std::shared_ptr<ReplacementData>& replacement_data) const { // Unprioritize replacement data victimization std::static_pointer_cast<RandomReplData>( replacement_data)->valid = false; } void RandomRP::touch(const std::shared_ptr<ReplacementData>& replacement_data) const { } void RandomRP::reset(const std::shared_ptr<ReplacementData>& replacement_data) const { // Unprioritize replacement data victimization std::static_pointer_cast<RandomReplData>( replacement_data)->valid = true; } ReplaceableEntry* RandomRP::getVictim(const ReplacementCandidates& candidates) const { // There must be at least one replacement candidate assert(candidates.size() > 0); // Choose one candidate at random ReplaceableEntry* victim = candidates[random_mt.random<unsigned>(0, candidates.size() - 1)]; // Visit all candidates to search for an invalid entry. If one is found, // its eviction is prioritized for (const auto& candidate : candidates) { if (!std::static_pointer_cast<RandomReplData>( candidate->replacementData)->valid) { victim = candidate; break; } }
LFU(Least Frequently Used),最近最少被使用次數的block被替換,每個block都有一個引用計數,每次替換該block,都會對該計數加1。
gem5中該替換策略的代碼:

void LFURP::invalidate(const std::shared_ptr<ReplacementData>& replacement_data) const { // Reset reference count std::static_pointer_cast<LFUReplData>(replacement_data)->refCount = 0; } void LFURP::touch(const std::shared_ptr<ReplacementData>& replacement_data) const { // Update reference count std::static_pointer_cast<LFUReplData>(replacement_data)->refCount++; } void LFURP::reset(const std::shared_ptr<ReplacementData>& replacement_data) const { // Reset reference count std::static_pointer_cast<LFUReplData>(replacement_data)->refCount = 1; } ReplaceableEntry* LFURP::getVictim(const ReplacementCandidates& candidates) const { // There must be at least one replacement candidate assert(candidates.size() > 0); // Visit all candidates to find victim ReplaceableEntry* victim = candidates[0]; for (const auto& candidate : candidates) { // Update victim entry if necessary if (std::static_pointer_cast<LFUReplData>( candidate->replacementData)->refCount < std::static_pointer_cast<LFUReplData>( victim->replacementData)->refCount) { victim = candidate; } } return victim; }
FIFO(First in First out), 最先使用過的block,最先被替換。
gem5中該替換策略的代碼:

void FIFORP::invalidate(const std::shared_ptr<ReplacementData>& replacement_data) const { // Reset insertion tick std::static_pointer_cast<FIFOReplData>( replacement_data)->tickInserted = Tick(0); } void FIFORP::touch(const std::shared_ptr<ReplacementData>& replacement_data) const { // A touch does not modify the insertion tick } void FIFORP::reset(const std::shared_ptr<ReplacementData>& replacement_data) const { // Set insertion tick std::static_pointer_cast<FIFOReplData>( replacement_data)->tickInserted = curTick(); } ReplaceableEntry* FIFORP::getVictim(const ReplacementCandidates& candidates) const { // There must be at least one replacement candidate assert(candidates.size() > 0); // Visit all candidates to find victim ReplaceableEntry* victim = candidates[0]; for (const auto& candidate : candidates) { // Update victim entry if necessary if (std::static_pointer_cast<FIFOReplData>( candidate->replacementData)->tickInserted < std::static_pointer_cast<FIFOReplData>( victim->replacementData)->tickInserted) { victim = candidate; } } return victim; }
BIP,(Bimodal Insertion Policy)替換策略,是LRU和MRU的結合體,大概率采用MRU替換,小概率采用LRU策略。
gem5中該替換策略的代碼

struct BIPRPParams; class BIPRP : public LRURP { protected: /** * Bimodal throtle parameter. Value in the range [0,100] used to decide * if a new entry is inserted at the MRU or LRU position. */ const unsigned btp; public: /** Convenience typedef. */ typedef BIPRPParams Params; /** * Construct and initiliaze this replacement policy. */ BIPRP(const Params *p); /** * Destructor. */ ~BIPRP() {} /** * Reset replacement data for an entry. Used when an entry is inserted. * Uses the bimodal throtle parameter to decide whether the new entry * should be inserted as MRU, or LRU. * * @param replacement_data Replacement data to be reset. */ void reset(const std::shared_ptr<ReplacementData>& replacement_data) const override; }; void BIPRP::reset(const std::shared_ptr<ReplacementData>& replacement_data) const { std::shared_ptr<LRUReplData> casted_replacement_data = std::static_pointer_cast<LRUReplData>(replacement_data); // Entries are inserted as MRU if lower than btp, LRU otherwise if (random_mt.random<unsigned>(1, 100) <= btp) { casted_replacement_data->lastTouchTick = curTick(); } else { // Make their timestamps as old as possible, so that they become LRU casted_replacement_data->lastTouchTick = 1; } }
NRU(Not Recent Used) 是LRU的一個近似策略,被廣泛應用於現代高性能處理器中。應用NRU策略的cache,需要在每個cache block中增加一位標記,該標記(NRU bit)“0”表示最近可能被訪問到的,“1”表示最近不能訪問到的。
每當一個cache hit,該cache block的NRU bit被設置為“0”表示在最近的將來,該cache block很有可能再被訪問到;每當一個cache miss,替換算法會從左至右掃描NRU bit為“1”的block,如果找到則替換出該cache block,並將新插入的cache block 的NRU bit置為“0”,如果沒有找到,那么將所有cache block的NRU bit置為“1”,重新從左至右掃描。
STATIC RRIP, 該替換策略是對NRU的擴展,其將NRU bit擴展成M位,當M=1時,該算法蛻化成NRU。而擴展成M位的原因是為了更細粒度的區分cache block,而不是只有兩個狀態(最近將要訪問和最近最遠將要訪問)。
該算法的描述和NRU相同,每當一個cache hit,該cache block的NRU bit被設置為“0”表示在最近的將來,該cache block很有可能再被訪問到;每當一個cache miss,替換算法會從左至右掃描NRU bit為“2^M -1”的block,如果找到則替換出該cache block,並將新插入的cache block 的NRU bit置為“2^M -2”,如果沒有找到,那么將所有cache block的NRU bit增加1,重新從左至右掃描。
上面將新插入的cache block設置為“2^M -2”,主要是為了防止那些很久才能被再次使用到的cache block長期占用cache空間, 但這樣確實會影響那些空間局部性很好的程序的性能。
在RRIP類的策略中,NRU bit被描述為RRPV(Re- reference Prediction Values),可以理解為當前block被替換出去的可能性,越高越容易被替換出去。
DYNAMIC RRIP(Bimodal RRIP), 對Static RRIP來講,如果程序的工作集大於cache容量,那么將會頻繁的換進換出,造成抖動。為此,Bimodal RRIP提出,對於新插入的cache block,以較大概率設置NRU bits為“2^M -1",同時以較小概率設置為”2^M -2",一次來避免抖動。
那么對於混合的訪存序列,應該使用SRRIP還是BRRIP的問題,一種稱之為“set Dueling”的技術將兩種技術應用到不同的兩個cache set上,然后統計兩個set上的運行情況(主要是命中率),然后來決斷到底使用兩種技術中的哪一個,然后將該算法策略部署到其余各個set上。
GEM5中也有BRRIP替換策略的實現。