1. 移動端數據抓取
fillder進行一個基本的配置:tools->options->https->Decry..
fillder進行一個基本的配置:tools->options->connection->allow remote
http://fillder所在pc機的ip+port/:訪問到一張提供了證書下載功能的頁面
fiddler所在的機器和手機在同一網段下:在手機瀏覽器中訪問http://fillder所在pc機的ip:8888/
獲取子頁面進行證書的下載和安裝(證書信任的操作)
配置你的手機的代理:將手機的代理配置成fiddler所對應pc機的ip和fillder自己的端口
就可以讓fiddler捕獲手機發起的http和https的請求
2. scrapy框架
框架就是一個集成了各種功能且具有很強通用性(可以被應用在各種不同的需求中)的一個項目模板.
scrapy集成了哪些功能:
高性能的數據解析操作,持久化存儲操作,高性能的數據下載的操作.....
3.環境的安裝:
pip3 install wheel
下載twisted http://www.lfd.uci.edu/~gohlke/pythonlibs/#twisted
進入下載目錄,執行
pip3 install Twisted-20.3.0-cp37-cp37m-win_amd64.whl
pip3 install pywin32
4 scrapy的基本使用
創建一個工程:scrapy startproject zbb
必須在spiders這個目錄下創建一個爬蟲文件
cd zbb
scrapy genspider first www.baidu.com
import scrapy
class FirstSpider(scrapy.Spider):
# 爬蟲文件的名稱:爬蟲文件的唯一標識(在spiders子目錄下是可以創建多個爬蟲文件)
name = 'first'
# 允許的域名
# allowed_domains = ['www.baidu.com']
# 起始的url列表:列表中存放的url會被scrapy自動的進行請求發送
start_urls = ['https://www.baidu.com/', 'https://www.sogou.com/']
# 用作於數據解析:將start_urls列表中對應的url請求成功后的響應數據進行解析
def parse(self, response):
pass
執行工程
scrapy crawl first
settings.py
#不遵從robots協議
ROBOTSTXT_OBEY = False
#進行UA偽裝
USER_AGENT = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.105 Safari/537.36'
#進行日志等級設定
#scrapy crawl first --nolog
LOG_LEVEL = 'ERROR'
5.持久化存儲
1.基於終端指令:
特性:只可以將parse方法的返回值存儲到本地的磁盤文件中
指令:scrapy crawl first -o quibai.csv
import scrapy
class FirstSpider(scrapy.Spider):
name = 'first'
start_urls = ['https://www.qiushibaike.com/text/']
def parse(self, response):
div_list = response.xpath('//*[@id="content"]/div/div[2]/div')
all_data = []
for div in div_list:
# xpath返回的列表元素一定是Selector對象
# 最終要解析的數據儲存在改對象中
# extract()將data參數取值
# author = div.xpath("./div[1]/a[2]/h2/text()")[0].extract()
author = div.xpath("./div[1]/a[2]/h2/text()").extract_first()
# 直接調用是將extract作用到每個列表元素中
con = div.xpath('./a[1]/div/span//text()').extract()
# 將列表轉換為字符轉
con = ''.join(con)
dic = {
'author': author,
'content': con
}
all_data.append(dic)
return all_data
2.基於管道:
1.數據解析
2.在item類中定義相關的屬性
3.將解析的數據存儲或者封裝到一個item類型的對象(items文件中對應類的對象)
4.向管道提交item
5.在管道文件的process_item方法中接收item進行持久化存儲
6.在配置文件中開啟管道
ITEM_PIPELINES = {
'zbb.pipelines.ZbbPipeline': 300, #300表示優先值
}
item
import scrapy
class ZbbItem(scrapy.Item):
# define the fields for your item here like:
author = scrapy.Field()
con = scrapy.Field()
first.py
import scrapy
from zbb.items import ZbbItem
class FirstSpider(scrapy.Spider):
name = 'first'
start_urls = ['https://www.qiushibaike.com/text/']
def parse(self, response):
div_list = response.xpath('//*[@id="content"]/div/div[2]/div')
all_data = []
for div in div_list:
author = div.xpath("./div[1]/a[2]/h2/text()")[0].extract()
con = div.xpath('./a[1]/div/span//text()').extract()
con = ''.join(con)
#將解析的數據儲存到item對象中
item = ZbbItem()
item['author'] =author
item['con'] =con
#將item提交到管道
yield item
pipelines.py
class ZbbPipeline:
fp = None
def open_spider(self, spider):
print('開始爬蟲......')
self.fp = open('qiushibaike.txt', 'w', encoding='utf-8')
# 使用來接收爬蟲文件提交過來的item,然后將其進行任意形式的持久化存儲
# 參數item:就是接收到的item對象
# 該方法每接收一個item就會調用一次
def process_item(self, item, spider):
author = item['author']
con = item['con']
self.fp.write(author + ':' + con + '\n')
return item # item是返回給了下一個即將被執行的管道類
def close_spider(self, spider):
print('結束爬蟲!')
self.fp.close()
3.將同一份數據持久化到不同的平台中
-
分析:
- 1.管道文件中的一個管道類負責數據的一種形式的持久化存儲
- 2.爬蟲文件向管道提交的item只會提交給優先級最高的那一個管道類
- 3.在管道類的process_item中的return item表示的是將當前管道接收的item返回/提交給
下一個即將被執行的管道類
setting配置
ITEM_PIPELINES = {
'zbb.pipelines.ZbbPipeline': 300, # 300表示優先值
'zbb.pipelines.MysqlPL': 301, # 300表示優先值 越小越好
'zbb.pipelines.RedisPL': 302,
}
pipelines
import pymysql
from redis import Redis
class ZbbPipeline:
fp = None
def open_spider(self, spider):
print('開始爬蟲......')
self.fp = open('qiushibaike.txt', 'w', encoding='utf-8')
# 使用來接收爬蟲文件提交過來的item,然后將其進行任意形式的持久化存儲
# 參數item:就是接收到的item對象
# 該方法每接收一個item就會調用一次
def process_item(self, item, spider):
author = item['author']
con = item['con']
self.fp.write(author + ':' + con + '\n')
return item # item是返回給了下一個即將被執行的管道類
def close_spider(self, spider):
print('結束爬蟲!')
self.fp.close()
class MysqlPL:
conn = None
cursor = None
def open_spider(self, spider):
self.conn = pymysql.Connect(host='127.0.0.1', port=3306, user='root', password='123', db='spider',
charset='utf8')
print(self.conn)
def process_item(self, item, spider):
author = item['author']
con = item['con']
sql = 'insert into qiubai values ("%s","%s")'%(author, con)
self.cursor = self.conn.cursor()
try:
self.cursor.execute(sql)
self.conn.commit()
except Exception as e:
print(e)
self.conn.rollback()
return item
def close_spider(self, spider):
self.cursor.close()
self.conn.close()
class RedisPL:
conn = None
def open_spider(self, spider):
self.conn = Redis(host='127.0.0.1', port=6379)
print(self.conn)
def process_item(self, item, spider):
self.conn.lpush('all_data', item)
# 注意:如果將字典寫入redis報錯:pip install -U redis==2.10.6
6.在scrapy中手動請求發送(GET)
- 使用場景:爬取多個頁碼對應的頁面源碼數據
- yield scrapy.Request(url,callback)
import scrapy
from zbb.items import ZbbItem
class FirstSpider(scrapy.Spider):
name = 'first'
start_urls = ['https://www.qiushibaike.com/text/']
# 將多個頁碼對應的頁面數據進行爬取和解析的操作
url = 'https://www.qiushibaike.com/text/page/%d/' # 通用的url模板
pageNum = 1
def parse(self, response):
div_list = response.xpath('//*[@id="content"]/div/div[2]/div')
all_data = []
for div in div_list:
author = div.xpath("./div[1]/a[2]/h2/text()")[0].extract()
con = div.xpath('./a[1]/div/span//text()').extract()
con = ''.join(con)
# 將解析的數據儲存到item對象中
item = ZbbItem()
item['author'] = author
item['con'] = con
# 將item提交到管道
yield item
if self.pageNum <= 5:
self.pageNum += 1
new_url = format(self.url%self.pageNum)
# 手動請求(get)的發送
yield scrapy.Request(new_url, callback=self.parse)
7.在scrapy中手請求發送(POST)
一般不用除非瘋了 很麻煩
data = { #post請求的請求參數
'kw':'aaa'
}
yield scrapy.FormRequest(url,formdata=data,callback)
8.scrapy五大核心組件的工作流程:
引擎(Scrapy)
用來處理整個系統的數據流處理, 觸發事務(框架核心)
調度器(Scheduler)
用來接受引擎發過來的請求, 壓入隊列中, 並在引擎再次請求的時候返回. 可以想像成一個URL(抓取網頁的網址或者說是鏈接)的優先隊列, 由它來決定下一個要抓取的網址是什么, 同時去除重復的網址
下載器(Downloader)
用於下載網頁內容, 並將網頁內容返回給蜘蛛(Scrapy下載器是建立在twisted這個高效的異步模型上的)
爬蟲(Spiders)
爬蟲是主要干活的, 用於從特定的網頁中提取自己需要的信息, 即所謂的實體(Item)。用戶也可以從中提取出鏈接,讓Scrapy繼續抓取下一個頁面
項目管道(Pipeline)
負責處理爬蟲從網頁中抽取的實體,主要的功能是持久化實體、驗證實體的有效性、清除不需要的信息。當頁面被爬蟲解析后,將被發送到項目管道,並經過幾個特定的次序處理數據。
9.基於scrapy進行圖片數據的爬取
在爬蟲文件中只需要解析提取出圖片地址,然后將地址提交給管道
配置文件中:IMAGES_STORE = './imgsLib'
在管道文件中進行管道類的制定:
1.from scrapy.pipelines.images import ImagesPipeline
2.將管道類的父類修改成ImagesPipeline
3.重寫父類的三個方法:
1.爬取校花網圖片
第一步: 創建一個項目
scrapy startproject zxy
第二步: 創建一個爬蟲文件
scrapy genspider img www.baidu.com
第三步:配置Stettings
#UA偽裝
USER_AGENT = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.105 Safari/537.36'
#不遵循reboot協議
ROBOTSTXT_OBEY = False
#顯示日志
LOG_LEVEL = 'ERROR'
#圖片地址
IMAGES_STORE = './imgsLib'
#開啟管道
ITEM_PIPELINES = {
'zxy.pipelines.ZxyPipeline': 300,
}
img.py
import scrapy
from zxy.items import ZxyItem
class ImgSpider(scrapy.Spider):
name = 'img'
# allowed_domains = ['www.baidu.com']
start_urls = ['http://www.521609.com/daxuemeinv/']
url = 'http://www.521609.com/daxuemeinv/list8%d.html'
pageNum = 1
def parse(self, response):
li_list = response.xpath('//*[@id="content"]/div[2]/div[2]/ul/li')
for li in li_list:
img_src = "http://www.521609.com/" + li.xpath("./a[1]/img/@src").extract_first()
item = ZxyItem()
item['src'] = img_src
yield item
if self.pageNum < 3:
self.pageNum += 1
new_url = format(self.url%self.pageNum)
# 手動請求(get)的發送
yield scrapy.Request(new_url, callback=self.parse)
item.py
import scrapy
class ZxyItem(scrapy.Item):
# define the fields for your item here like:
src = scrapy.Field()
管道
from scrapy.pipelines.images import ImagesPipeline
import scrapy
# class ZxyPipeline:
# def process_item(self, item, spider):
# return item
class ZxyPipeline(ImagesPipeline):
#對某一個媒體資源進行請求發送
#item就是接受到spider發送過來的item
def get_media_requests(self, item, info):
yield scrapy.Request(item['src'])
#制定媒體數據存儲的名稱
def file_path(self, request, response=None, info=None):
name = request.url.split('/')[-1]
print("go" + name)
return name
#完成之后將item給下一個管道類
# def item_completed(self, results, item, info):
# return item
10.scrapy爬取數據的效率
只需要將如下五個步驟配置在配置文件中即可
增加並發:
默認scrapy開啟的並發線程為32個,可以適當進行增加。在settings配置文件中修改CONCURRENT_REQUESTS = 100值為100,並發設置成了為100。
降低日志級別:
在運行scrapy時,會有大量日志信息的輸出,為了減少CPU的使用率。可以設置log輸出信息為INFO或者ERROR即可。在配置文件中編寫:LOG_LEVEL = ‘INFO’
禁止cookie:
如果不是真的需要cookie,則在scrapy爬取數據時可以禁止cookie從而減少CPU的使用率,提升爬取效率。在配置文件中編寫:COOKIES_ENABLED = False
禁止重試:
對失敗的HTTP進行重新請求(重試)會減慢爬取速度,因此可以禁止重試。在配置文件中編寫:RETRY_ENABLED = False
減少下載超時:
如果對一個非常慢的鏈接進行爬取,減少下載超時可以能讓卡住的鏈接快速被放棄,從而提升效率。在配置文件中進行編寫:DOWNLOAD_TIMEOUT = 10 超時時間為10s
11.請求傳參(實現深度爬取)
實現深度爬取:爬取多個層級對應的頁面數據
使用場景:爬取的數據沒有在同一張頁面中(如前面爬取的boos直聘)
#在手動請求的時候傳遞item:yield scrapy.Request(url,callback,meta={'item':item})
#將meta這個字典傳遞給callback
#在callback中接收meta:item = response.meta['item']
1.爬取www.4567kan.com
第一步: 創建一個項目
scrapy startproject mv
第二步: 創建一個爬蟲文件
scrapy genspider movie www.baidu.com
第三步:配置Stettings
#UA偽裝
USER_AGENT = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.105 Safari/537.36'
#不遵循reboot協議
ROBOTSTXT_OBEY = False
#顯示日志
LOG_LEVEL = 'ERROR'
#開啟管道
ITEM_PIPELINES = {
'zxy.pipelines.ZxyPipeline': 300,
}
movie.py
import scrapy
from mv.items import MvItem
class MovieSpider(scrapy.Spider):
name = 'movie'
start_urls = ['https://www.4567kan.com/index.php/vod/show/class/%E5%8A%A8%E4%BD%9C/id/1/page/1.html']
url = 'https://www.4567kan.com/index.php/vod/show/class/%E5%8A%A8%E4%BD%9C/id/1/page/%d.html'
pageNum = 1
def parse(self, response):
li_list = response.xpath('/html/body/div[1]/div/div/div/div[2]/ul/li')
for li in li_list:
title = li.xpath('./div[1]/a/@title').extract_first()
href = 'https://www.4567kan.com/' + li.xpath('./div[1]/a/@href').extract_first()
item = MvItem()
item['title'] = title
#mata是一個字典,蓋子點就可以傳遞給callback指定的回調函數
yield scrapy.Request(href, callback=self.parse_detail, meta={'item': item})
if self.pageNum <5:
self.pageNum+=1
new_url = format(self.url%self.pageNum)
yield scrapy.Request(new_url,callback=self.parse)
def parse_detail(self, response):
item = response.meta['item']
desc = response.xpath('/html/body/div[1]/div/div/div/div[2]/p[5]/span[2]/text()').extract_first()
item['desc'] = desc
yield item
item.py
import scrapy
class MvItem(scrapy.Item):
# define the fields for your item here like:
title = scrapy.Field()
desc = scrapy.Field()
管道
class MvPipeline:
def process_item(self, item, spider):
print(item)
return item
12.Middleware中間件
下載中間件:批量
作用:批量攔截請求和響應
1.攔截請求:process_request
UA偽裝:
將所有的請求盡可能多的設定成不同的請求載體身份標識(一般直接在settings中加入,不在這里配置)
request.headers['User Agent'] = 'xxx'
批量實現
user_agent_list = [
"Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.1 "
"(KHTML, like Gecko) Chrome/22.0.1207.1 Safari/537.1",
"Mozilla/5.0 (X11; CrOS i686 2268.111.0) AppleWebKit/536.11 "
"(KHTML, like Gecko) Chrome/20.0.1132.57 Safari/536.11",
"Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.6 "
"(KHTML, like Gecko) Chrome/20.0.1092.0 Safari/536.6",
"Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.6 "
"(KHTML, like Gecko) Chrome/20.0.1090.0 Safari/536.6",
"Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/537.1 "
"(KHTML, like Gecko) Chrome/19.77.34.5 Safari/537.1",
"Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/536.5 "
"(KHTML, like Gecko) Chrome/19.0.1084.9 Safari/536.5",
"Mozilla/5.0 (Windows NT 6.0) AppleWebKit/536.5 "
"(KHTML, like Gecko) Chrome/19.0.1084.36 Safari/536.5",
"Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.3 "
"(KHTML, like Gecko) Chrome/19.0.1063.0 Safari/536.3",
"Mozilla/5.0 (Windows NT 5.1) AppleWebKit/536.3 "
"(KHTML, like Gecko) Chrome/19.0.1063.0 Safari/536.3",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_8_0) AppleWebKit/536.3 "
"(KHTML, like Gecko) Chrome/19.0.1063.0 Safari/536.3",
"Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.3 "
"(KHTML, like Gecko) Chrome/19.0.1062.0 Safari/536.3",
"Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.3 "
"(KHTML, like Gecko) Chrome/19.0.1062.0 Safari/536.3",
"Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.3 "
"(KHTML, like Gecko) Chrome/19.0.1061.1 Safari/536.3",
"Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.3 "
"(KHTML, like Gecko) Chrome/19.0.1061.1 Safari/536.3",
"Mozilla/5.0 (Windows NT 6.1) AppleWebKit/536.3 "
"(KHTML, like Gecko) Chrome/19.0.1061.1 Safari/536.3",
"Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.3 "
"(KHTML, like Gecko) Chrome/19.0.1061.0 Safari/536.3",
"Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/535.24 "
"(KHTML, like Gecko) Chrome/19.0.1055.1 Safari/535.24",
"Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/535.24 "
"(KHTML, like Gecko) Chrome/19.0.1055.1 Safari/535.24"
]
def process_request(self, request, spider):
#從列表中隨機選擇一個
request.headers['User-Agent']=random.choice(user_agent_list)
代理操作
PROXY_http = [
'153.180.102.104:80',
'195.208.131.189:56055',
]
PROXY_https = [
'120.83.49.90:9000',
'95.189.112.214:35508',
]
if request.url.split(':')[0] == 'http':
request.meta['proxy'] = 'http://' + random.choice(PROXY_http)
else:
request.meta['proxy'] = 'https://' + random.choice(PROXY_https)
2.攔截異常:process_exception
如果代理ip報錯可以重新請求
def process_exception(self, request, exception, spider):
print('i am process_exception')
# 攔截到異常的請求然后對其進行修正,然后重新進行請求發送
# 代理操作
if request.url.split(':')[0] == 'http':
request.meta['proxy'] = 'http://' + random.choice(PROXY_http)
else:
request.meta['proxy'] = 'https://' + random.choice(PROXY_https)
return request # 將修正之后的請求進行重新發送
3.攔截響應:process_response
篡改響應數據或者直接替換響應對象
selenium在scrapy中的應用:
實例化瀏覽器對象:寫在爬蟲類的構造方法中
關閉瀏覽器:爬蟲類中的closed(self,spider)關閉瀏覽器
在中間件中執行瀏覽器自動化的操作
13.爬取網易新聞
爬取網易新聞的國內,國際,軍事,航空,無人機這五個板塊下對應的新聞標題和內容
分析:
每一個板塊對應頁面中的新聞數據是動態加載出來的
第一步:創建項目
scrapy startproject wangyiPro
scrapy genspider wangyi www.baidu.com
第二步:修改文件
wangyi.py
import scrapy
from selenium import webdriver
from wangyiPro.items import WangyiproItem
class WangyiSpider(scrapy.Spider):
name = 'wangyi'
# allowed_domains = ['www.xxx.com']
start_urls = ['https://news.163.com']
five_model_urls = []
bro = webdriver.Chrome(executable_path=r'C:\Users\zhui3\Desktop\chromedriver.exe')
# 用來解析五個板塊對應的url,然后對其進行手動請求發送
def parse(self, response):
model_index = [3, 4, 6, 7, 8]
li_list = response.xpath('//*[@id="index2016_wrap"]/div[1]/div[2]/div[2]/div[2]/div[2]/div/ul/li')
for index in model_index:
li = li_list[index]
# 獲取了五個板塊對應的url
model_url = li.xpath('./a/@href').extract_first()
self.five_model_urls.append(model_url)
# 對每一個板塊的url進行手動i請求發送
yield scrapy.Request(model_url, callback=self.parse_model)
# 解析每一個板塊頁面中的新聞標題和新聞詳情頁的url
# 問題:response(不滿足需求的response)中並沒有包含每一個板塊中動態加載出的新聞數據
def parse_model(self, response):
div_list = response.xpath('/html/body/div[1]/div[3]/div[4]/div[1]/div/div/ul/li/div/div')
for div in div_list:
title = div.xpath('./div/div[1]/h3/a/text()').extract_first()
detail_url = div.xpath('./div/div[1]/h3/a/@href').extract_first()
item = WangyiproItem()
item['title'] = title
# 對詳情頁發起請求解析出新聞內容
yield scrapy.Request(detail_url, callback=self.parse_new_content, meta={'item': item})
def parse_new_content(self, response): # 解析新聞內容
item = response.meta['item']
content = response.xpath('//*[@id="endText"]//text()').extract()
content = ''.join(content)
item['content'] = content
yield item
# 最后執行
def closed(self, spider):
self.bro.quit()
items.py
import scrapy
class WangyiproItem(scrapy.Item):
# define the fields for your item here like:
title = scrapy.Field()
content = scrapy.Field()
中間件
from time import sleep
from scrapy import signals
from scrapy.http import HtmlResponse
class WangyiproDownloaderMiddleware(object):
def process_request(self, request, spider):
return None
def process_response(self, request, response, spider):#spider就是爬蟲文件中爬蟲類實例化的對象
#進行所有響應對象的攔截
#1.將所有的響應中那五個不滿足需求的響應對象找出
#1.每一個響應對象對應唯一一個請求對象
#2.如果我們可以定位到五個響應對應的請求對象后,就可以通過該i請求對象定位到指定的響應對象
#3.可以通過五個板塊的url定位請求對象
#總結: url==》request==》response
#2.將找出的五個不滿足需求的響應對象進行修正(替換)
#spider.five_model_urls:五個板塊對應的url
bro = spider.bro
if request.url in spider.five_model_urls:
bro.get(request.url)
sleep(1)
page_text = bro.page_source #包含了動態加載的新聞數據
#如果if條件程利則該response就是五個板塊對應的響應對象
# HtmlResponse 篡改響應對象
new_response = HtmlResponse(url=request.url,body=page_text,encoding='utf-8',request=request)
return new_response
return response
def process_exception(self, request, exception, spider):
pass
管道: 基於百度ai分類
from aip import AipNlp
""" 你的 APPID AK SK """
APP_ID = '219518'
API_KEY = 'rXTO5pFiBSoEtwYVl8cKH'
SECRET_KEY = 'oyxpRL7qyb9ubQC8nbsHpPGSfUV '
class WangyiproPipeline:
client = AipNlp(APP_ID, API_KEY, SECRET_KEY)
def process_item(self, item, spider):
title = item['title']
content = item['content']
#UnicodeEncodeError: 'gbk' codec can't encode character '\xa0' in position 242: illegal multibyte sequence
#報錯說不能被編碼,所以替換掉
content = content.replace(u'\xa0',u'')
title = title.replace(u'\xa0',u'')
wd_dic = self.client.keyword(title,content)
tp_dic = self.client.topic(title,content)
print(wd_dic,tp_dic)
return item
setting.py
USER_AGENT = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/76.0.3809.132 Safari/537.36'
ROBOTSTXT_OBEY = False
LOG_LEVEL = 'ERROR'
DOWNLOADER_MIDDLEWARES = {
'wangyiPro.middlewares.WangyiproDownloaderMiddleware': 543,
}
ITEM_PIPELINES = {
'wangyiPro.pipelines.WangyiproPipeline': 300,
}
run.py
from scrapy.cmdline import execute
execute(["scrapy", "crawl", "wangyi"])
14.基於CrawlSpider全站數據爬取
CrawlSpider就是爬蟲類中Spider的一個子類
直接項目:
爬取 陽光在線 標題、處理狀態和文本內容
1.創建項目
scrapy startproject sumpro
2.創建一個爬蟲文件:
scrapy genspider -t crawl sun www.xxxx.com
3.構造鏈接提取器和規則解析器
3.1鏈接提取器:
作用 : 可以根據指定的規則進行指定鏈接的提取
提取的規則: allow =‘正則表達式’
3.2 規則解析器:
作用:獲取鏈接提取器提取到的鏈接,然后對其進行請求發送,根據指定規則對請求到的頁面
源碼數據進行數據解析
fllow=True:
將鏈接提取器 繼續作用到連接提取器提取出的頁碼鏈接 所對應的頁面中
注意:連接提取器和規則解析器也是一對一的關系
4.項目代碼
sun.py
from scrapy.linkextractors import LinkExtractor
from scrapy.spiders import CrawlSpider, Rule
from sumpro.items import SumproItem, SumproItem_second
class SunSpider(CrawlSpider):
name = 'sun'
# allowed_domains = ['www.xxxx.com']
start_urls = ['http://wz.sun0769.com/political/index/politicsNewest?id=1&page=1']
# 鏈接提取器
Link = LinkExtractor(allow=r'id=1&page=\d+')
Link_detail = LinkExtractor(allow=r'index\?id=\d+')
rules = (
# 實例化一個Rule(規則解釋器)的對象
Rule(Link, callback='parse_item', follow=True),
Rule(Link_detail, callback='parse_detail'),
)
def parse_item(self, response):
li_list = response.xpath('/html/body/div[2]/div[3]/ul[2]/li')
for i in li_list:
title = i.xpath('./span[3]/a[1]/text()').extract_first()
status = i.xpath('./span[2]/text()').extract_first()
num = i.xpath('./span[1]/text()').extract_first()
item = SumproItem_second()
item['title'] = title
item['status'] = status
item['num'] = num
yield item
def parse_detail(self, response):
content = response.xpath('/html/body/div[3]/div[2]/div[2]/div[2]/pre//text()').extract()
content = ''.join(content)
num = response.xpath('/html/body/div[3]/div[2]/div[2]/div[1]/span[4]/text()').extract_first()
#num在詳情頁面里可能是空的
if num:
num = num.split(':')[-1]
item = SumproItem()
item['content'] = content
item['num'] = num
yield item
item.py
import scrapy
#為了讓content 和title status同時展示儲存 所以加了一個num
class SumproItem(scrapy.Item):
# define the fields for your item here like:
content = scrapy.Field()
num = scrapy.Field()
class SumproItem_second(scrapy.Item):
title = scrapy.Field()
status = scrapy.Field()
num = scrapy.Field()
管道
class SumproPipeline:
def process_item(self, item, spider):
if item.__class__.__name__ == 'SumproItem':
content = item['content']
num = item['num']
print("內容" + content) #執行sql
else:
title = item['title']
status = item['status']
num = item['num']
print("1" + title, "2"+status,"3"+num)
return item
中間件,網站的反爬蟲是封ip,所以要設置代理ip
def process_request(self, request, spider):
request.meta['proxy'] = 'http://' + "218.91.7.82:43413"
setting 還要開啟中間件,管道,日志,不遵循協議,UA偽裝
BOT_NAME = 'sumpro'
USER_AGENT = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/76.0.3809.132 Safari/537.36'
ROBOTSTXT_OBEY = False
LOG_LEVEL = 'ERROR'
SPIDER_MODULES = ['sumpro.spiders']
NEWSPIDER_MODULE = 'sumpro.spiders'
########################
ITEM_PIPELINES = {
'sumpro.pipelines.SumproPipeline': 300,
}
DOWNLOADER_MIDDLEWARES = {
'sumpro.middlewares.SumproDownloaderMiddleware': 543,
}
run.py
from scrapy.cmdline import execute
execute(["scrapy", "crawl", "sun"])
15.分布式爬蟲
什么是分布式爬蟲?
基於多台電腦組建一個分布式機群,然后讓機群中的每一台電腦執行同一組程序,然后讓它們對同一個
網站的數據進行分布爬取
為要使用分布式爬蟲?
提升爬取數據的效率
如何實現分布式爬蟲?
基於scrapy+redis的形式實現分布式
scrapy結合這scrapy-redis組建實現的分布式
原生的scrapy框架是無法實現分布式?
調度器無法被分布式機群共享
管道無法被共享
scrapy-redis組件的作用:
提供可以被共享的調度器和管道
1.環境安裝:
redis
pip Install scrapy-redis
2.編碼流程:
1.創建一個工程
scrapy startproject fbsPro
2.創建一個爬蟲文件
基於CrawlSpider的爬蟲文件
scrapy genspider -t crawl fbs www.xxxx.com
3.修改當前的爬蟲文件
- 導包:from scrapy_redis.spiders import RedisCrawlSpider
- 將當前爬蟲類的父類修改成RedisCrawlSpider
- 將start_urls替換成redis_key = 'xxx'#表示的是可被共享調度器中隊列的名稱
- 編寫爬蟲類爬取數據的操作
4.對settings進行配置:
-UA
USER_AGENT = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/76.0.3809.132 Safari/537.36'
-指定管道:
#開啟可以被共享的管道
ITEM_PIPELINES = {
'scrapy_redis.pipelines.RedisPipeline': 400
}
- 指定調度器:
#增加了一個去重容器類的配置, 作用使用Redis的set集合來存儲請求的指紋數據, 從而實現請求去重的持久化
DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter"
#使用scrapy-redis組件自己的調度器
SCHEDULER = "scrapy_redis.scheduler.Scheduler"
#配置調度器是否要持久化, 也就是當爬蟲結束了, 要不要清空Redis中請求隊列和去重指紋的set。如果是True, 就表示要持久化存儲, 就不清空數據, 否則清空數據
SCHEDULER_PERSIST = True
#指定redis的服務:
REDIS_HOST = 'redis服務的ip地址'
REDIS_PORT = 6379
# REDIS_PARAMS = {
# 'password': 'redisPasswordTest666666',
# }
#更改爬取速度
#CONCURRENT_REQUESTS = 2
5.redis的配置
進行配置:redis.conf
#bind 127.0.0.1
#關閉protected-mode模式,此時外部網絡可以直接訪問
protected-mode no
攜帶配置文件啟動redis服務
./redis-server redis.conf
啟動redis的客戶端
redis-cli
6.執行當前的工程
進入到爬蟲文件對應的目錄中:
scrapy runspider fbs.py
7.向調度器隊列中仍入一個起始的url:
隊列在哪里呢?
答:隊列在redis中
lpush fbsQueue http://wz.sun0769.com/political/index/politicsNewest?id=1&page=1
8.置執行完成之后
lrange fbs:items
9.代碼
fbs.py
import scrapy
from scrapy.linkextractors import LinkExtractor
from scrapy.spiders import CrawlSpider, Rule
from scrapy_redis.spiders import RedisCrawlSpider,RedisSpider
from fbsPro.items import FbsproItem
class FbsSpider(RedisCrawlSpider):
name = 'fbs'
# allowed_domains = ['www.xxxx.com']
# start_urls = ['http://www.xxxx.com/']
redis_key = 'fbsQueue'
rules = (
Rule(LinkExtractor(allow=r'id=1&page=\d+'), callback='parse_item', follow=True),
)
def parse_item(self, response):
li_list = response.xpath('/html/body/div[2]/div[3]/ul[2]/li')
for i in li_list:
title = i.xpath('./span[3]/a[1]/text()').extract_first()
status = i.xpath('./span[2]/text()').extract_first()
item = FbsproItem()
item['title'] = title
item['status'] = status
yield item
items.py
class FbsproItem(scrapy.Item):
# define the fields for your item here like:
title = scrapy.Field()
status = scrapy.Field()
settings.py
USER_AGENT = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/76.0.3809.132 Safari/537.36'
BOT_NAME = 'fbsPro'
SPIDER_MODULES = ['fbsPro.spiders']
NEWSPIDER_MODULE = 'fbsPro.spiders'
ROBOTSTXT_OBEY = False
CONCURRENT_REQUESTS = 2
ITEM_PIPELINES = {
'scrapy_redis.pipelines.RedisPipeline': 400
}
DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter"
SCHEDULER = "scrapy_redis.scheduler.Scheduler"
SCHEDULER_PERSIST = True
REDIS_HOST = '127.0.0.1'
REDIS_PORT = 6379
# REDIS_PARAMS = {
# 'password': 'redisPasswordTest666666',
# }
16.增量式爬蟲
概念:
監測網站數據更新的情況。
核心:
去重!!!
深度爬取類型:
深度爬取類型的網站中需要對詳情頁的url進行記錄和檢測
記錄:將爬取過的詳情頁的url進行記錄保存
url存儲到redis的set中
檢測:如果對某一個詳情頁的url發起請求之前先要取記錄表中進行查看,該url是否存在,存在的話以為
着這個url已經被爬取過了。
代碼
import scrapy
from scrapy.linkextractors import LinkExtractor
from scrapy.spiders import CrawlSpider, Rule
from redis import Redis
from zjs_moviePro.items import ZjsMovieproItem
class MovieSpider(CrawlSpider):
name = 'movie'
conn = Redis(host='127.0.0.1', port=6379)
# allowed_domains = ['www.xxx.com']
start_urls = ['https://www.4567tv.tv/index.php/vod/show/id/6.html']
rules = ( # /index.php/vod/show/id/6/page/2.html
Rule(LinkExtractor(allow=r'id/6/page/\d+\.html'), callback='parse_item', follow=False),
)
def parse_item(self, response):
li_list = response.xpath('/html/body/div[1]/div/div/div/div[2]/ul/li')
for li in li_list:
name = li.xpath('./div/div/h4/a/text()').extract_first()
detail_url = 'https://www.4567tv.tv' + li.xpath('./div/div/h4/a/@href').extract_first()
ex = self.conn.sadd('movie_detail_urls', detail_url)
if ex == 1: # 向redis的set中成功插入了detail_url
print('有最新數據可爬......')
item = ZjsMovieproItem()
item['name'] = name
yield scrapy.Request(url=detail_url, callback=self.parse_detail, meta={'item': item})
else:
print('該數據已經被爬取過了!')
def parse_detail(self, response):
item = response.meta['item']
desc = response.xpath('/html/body/div[1]/div/div/div/div[2]/p[5]/span[2]/text()').extract_first()
item['desc'] = desc
yield item
class ZjsMovieproItem(scrapy.Item):
# define the fields for your item here like:
name = scrapy.Field()
desc = scrapy.Field()
class ZjsMovieproPipeline(object):
def process_item(self, item, spider):
conn = spider.conn
conn.lpush('movie_data',item)
return item
非深度爬取類型的網站:
名詞:數據指紋
一組數據的唯一標識