IV表征特征的預測能力:小於0.02,幾乎沒有預測能力;小於0.1,弱;小於0.3,中等;小於0.5,強;大於0.5,難以置信,需進一步確認
WOE describes the relationship between a predictive variable and a binary target variable.
IV measures the strength of that relationship.
計算公式:暫不寫……
代碼實現如下:
# 定義字典,記錄每個特征的信息值iv
iv_dict=dict()
def cal_iv(df,feature,target='target'):
'''
用於二分類的信息值計算,返回信息值和具體信息
:df pd.DataFrame
:feature 選擇的特征
:target 目標特征名
'''
ls=[]
for val in df[feature].unique():
al=df[df[feature]==val][feature].count()
good=df[(df[feature]==val)&(df[target]==1)][feature].count()
bad=df[(df[feature]==val)&(df[target]==0)][feature].count()
ls.append([val,al,good,bad])
data=pd.DataFrame(ls,columns=[feature,'all','good','bad'])
good_rate=data['good']/data['good'].sum()# good邊際概率
bad_rate=data['bad']/data['bad'].sum()# bad邊際概率
data['woe']=np.log(good_rate/bad_rate)# woe為證據權重
data = data.replace({'woe': {np.inf: 0, -np.inf: 0}})
data['iv']=data['woe']*(good_rate-bad_rate)
iv=data.iv.sum()
# 添加到字典
if feature not in iv_dict.keys():
iv_dict[feature]=iv
print('iv for %s is %f: '%(feature,iv))
return iv,data
