IV表征特征的預測能力:小於0.02,幾乎沒有預測能力;小於0.1,弱;小於0.3,中等;小於0.5,強;大於0.5,難以置信,需進一步確認
WOE describes the relationship between a predictive variable and a binary target variable.
IV measures the strength of that relationship.
計算公式:暫不寫……
代碼實現如下:
# 定義字典,記錄每個特征的信息值iv iv_dict=dict() def cal_iv(df,feature,target='target'): ''' 用於二分類的信息值計算,返回信息值和具體信息 :df pd.DataFrame :feature 選擇的特征 :target 目標特征名 ''' ls=[] for val in df[feature].unique(): al=df[df[feature]==val][feature].count() good=df[(df[feature]==val)&(df[target]==1)][feature].count() bad=df[(df[feature]==val)&(df[target]==0)][feature].count() ls.append([val,al,good,bad]) data=pd.DataFrame(ls,columns=[feature,'all','good','bad']) good_rate=data['good']/data['good'].sum()# good邊際概率 bad_rate=data['bad']/data['bad'].sum()# bad邊際概率 data['woe']=np.log(good_rate/bad_rate)# woe為證據權重 data = data.replace({'woe': {np.inf: 0, -np.inf: 0}}) data['iv']=data['woe']*(good_rate-bad_rate) iv=data.iv.sum() # 添加到字典 if feature not in iv_dict.keys(): iv_dict[feature]=iv print('iv for %s is %f: '%(feature,iv)) return iv,data