多分類-VGG16狗種類識別


from keras.applications.vgg16 import VGG16
from keras.models import Sequential
from keras.layers import Conv2D,MaxPool2D,Activation,Dropout,Flatten,Dense
from keras.optimizers import SGD
from keras.preprocessing.image import ImageDataGenerator,img_to_array,load_img
import numpy as np
import json
import warnings
warnings.filterwarnings("ignore")

batch_size = 32
train_data = 'data/train/'
test_data = 'data/test/'
image_w = 150
image_h = 150

#載入模型
vgg16_model = VGG16(weights='imagenet',
              include_top=False, 
              input_shape=(image_w,image_h,3))

# 搭建全連接層
top_model = Sequential()
top_model.add(Flatten(input_shape=vgg16_model.output_shape[1:]))
top_model.add(Dense(256,activation='relu'))
top_model.add(Dropout(0.5))
top_model.add(Dense(10,activation='softmax'))

model = Sequential()
model.add(vgg16_model)
model.add(top_model)

train_datagen = ImageDataGenerator(
    rotation_range = 40,     # 隨機旋轉度數
    width_shift_range = 0.2, # 隨機水平平移
    height_shift_range = 0.2,# 隨機豎直平移
    rescale = 1/255,         # 數據歸一化
    shear_range = 20,       # 隨機錯切變換
    zoom_range = 0.2,        # 隨機放大
    horizontal_flip = True,  # 水平翻轉
    fill_mode = 'nearest',   # 填充方式
) 
test_datagen = ImageDataGenerator(
    rescale = 1/255,         # 數據歸一化
) 

# 生成訓練數據
train_generator = train_datagen.flow_from_directory(
    train_data,
    target_size=(image_w,image_h),
    batch_size=batch_size,
    )

# 測試數據
test_generator = test_datagen.flow_from_directory(
    test_data,
    target_size=(image_w,image_h),
    batch_size=batch_size,
    )
    

label = train_generator.class_indices

#下面這一段是將每個狗的品種名字,保存到json文件里面。在預測的時候會預測出,0-9的數字
#我們可以通過數字索引出來這個名字,txt也可以
label = dict(zip(label.values(), label.keys()))
file = open('label.json','w',encoding='utf-8')
json.dump(label,file)

# 定義優化器,代價函數,訓練過程中計算准確率
model.compile(optimizer=SGD(lr=1e-3,momentum=0.9),loss='categorical_crossentropy',metrics=['accuracy'])

model.fit_generator(train_generator,
                    steps_per_epoch=len(train_generator),
                    epochs=50,
                    validation_data=test_generator,
                    validation_steps=len(test_generator))

# pip install h5py
model.save('model_vgg16_dog.h5')


#預測
from keras.models import load_model
from keras.preprocessing.image import img_to_array,load_img
import json
import numpy as np
import matplotlib.pyplot as plt

file = open('label.json','r',encoding='utf-8')
label = json.load(file)

# 載入模型
model = load_model('model_vgg16_dog.h5')

def predict(image):
    # 導入圖片
    image = load_img(image)
    plt.imshow(image)
    image = image.resize((150,150))
    image = img_to_array(image)
    image = image/255
    image = np.expand_dims(image,0)   
    plt.title(label[str(model.predict_classes(image)[0])])
    plt.axis('off')
    plt.show()
    
predict('data/test/n02093056-bullterrier/Niutougeng-is09aa7re.jpg')

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM