近似熵-樣本熵-多尺度熵


近似熵理論相關知識與代碼實現

https://blog.csdn.net/cratial/article/details/79707169

近似熵(ApEn)是一種用於量化時間序列波動的規律性和不可預測性的非線性動力學參數,它用一個非負數來表示一個時間序列的復雜性,反映了時間序列中新信息發生的可能性,越復雜的時間序列對應的近似熵越大[1].

[1]. Pincus, S. M. (1991). “Approximate entropy as a measure of system complexity”. Proceedings of the National Academy of Sciences. 88 (6): 2297–2301.

樣本熵理論相關知識與代碼實現

https://blog.csdn.net/Cratial/article/details/79742363

樣本熵(SampEn)是基於近似熵(ApEn)的一種用於度量時間序列復雜性的改進方法,在評估生理時間序列的復雜性和診斷病理狀態等方面均有應用[1].
由於樣本熵是近似熵的一種改進方法,因此可以將其與近似熵聯系起來理解.
與近似熵相比,樣本熵具有兩個優勢:樣本熵的計算不依賴數據長度;樣本熵具有更好的一致性,即參數m和r的變化對樣本熵的影響程度是相同的.

多尺度熵---Understanding Multiscale Entropy

https://blog.csdn.net/Cratial/article/details/88918132

多尺度熵(Multiscale entropy, MSE)將樣本熵擴展到多個時間尺度,以便在時間尺度不確定時提供額外的觀察視角。樣本熵的問題在於它沒有很好地考慮到時間序列中可能存在的不同時間尺度。為了計算不同時間尺度下信號的復雜性,Costa等人(2002,2005)提出了多尺度熵。
與其他熵測量方法一樣,多尺度熵的目標是評估時間序列的復雜性。使用多尺度熵的主要原因之一是不知道時間序列中相關的時間尺度。例如,在分析語音信號時,在單詞時間尺度下統計信號的復雜度會比統計整個語音片段的復雜度更加有效。但如果你不知道音頻信號代表語音,甚至對語音概念沒有任何了解,你就不知道應該運用什么時間尺度以從原始信號中獲得更多有用的信息。因此,通過多個時間尺度來分析問題將會得到更多信息。在腦電圖中,潛在的腦電模式是未知的,因此相關的時間尺度也是未知的。所以,需要通過多尺度樣本熵來分析哪個尺度對特定場合下腦電信號的分析更有用.


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM